European
Commission

Virt-eu

Project no. 732027
VIRT-EU
Values and ethics in Innovation for Responsible Technology in EUrope
Horizon 2020

ICT-35-2016
Enabling responsible ICT-related research and innovation
Start date: 1 January 2017 — Duration: 36 months

D3.1
Quantitative technical report

Due date: 30 April 2019
Actual submission date: 1 May 2019
Number of pages: 114
Lead beneficiary: UU
Authors: Matteo Magnani, Luca Rossi, Davide Vega

Project Consortium

Beneficiary no. Beneficiary name Short name
1 (Coordinator) IT University of Copenhagen ITU

2 London School of Economics LSE

3 Uppsala Universitet Uu

4 Politecnico Di Torino POLITO

5 Copenhagen Institute of Interaction Design CIID

6 Open Rights Group ORG

PU
CO

EU-RES

EU-CON

EU-SEC

R
DEM
DEC
0]

Dissemination Level

Public

Confidential, only for members of the consortium (including the Commission
Services)

Classified Information: RESTREINT UE (Commission Decision
2005/444/EC)

Classified Information: CONFIDENTIEL UE (Commission Decision
2005/444/EC)

Classified Information: SECRET UE (Commission Decision 2005/444/EC)

Dissemination Type

Document, report

Demonstrator, pilot, prototype
Websites, patent filling, videos, etc.
Other

ETHICS Ethics requirement

Contents

Executive Summary

1

Introduction
1.1 Theoretical framework, .
1.2 Outline

1.3 References

Modelling online communities
2.1 Multiplex networks oo o
2.2 Temporal text networks L.

Analyzing online communities

3.1 Community detection in multiplex networks
3.1.1 Clique percolation
3.1.2 Multiplex clique percolation

3.2 Community detection in temporal text networks
3.2.1 Continuous analysis
3.2.2 Discrete analysis oL

3.3 Comparison of layers L.
3.3.1 Layer similarity functions
3.3.2 Guidelines
3.3.3 Other practical considerations

3.4 Data visualizationo
3.4.1 The multiforce layout
3.4.2 Main algorithmic settings

MeetUp data analysis
4.1 Basicstatistics oL oo
4.2 Topicanalysis Lo

Twitter data analysis

5.1 The #IoT dataset,

5.2 Conversational analysis

5.3 Consolidated data
5.3.1 Single-layer analysis
5.3.2 Multilayer analysis

Related literature

A.1 Modelling networks, time and text
A1l Time & Topology oo oo
Al12 Time& Text
A13 Text & Topology oo v i oo
A.14 Time & text & topology

A.2 Community detection in multiplex networks

A.3 Network layouts o

A.3.1 Monoplex Network visualization 74

A.3.2 Multiplex Network Visualization 77

B The multinet library 78
B.1 The RecppRMLNetwork class 78
B.1.1 Adding, retrieving and deleting network objects 79

B.1.2 Handling attributes 82

B.2 Input, output and generation of RMLNetwork data 83
B.2.1 Importing and exporting data 83

B.2.2 Generation 85

B.2.3 Predefineddata, 87

B.3 Data exploration 0L oL 87
B.4 Measuring anetworko Lo Lo 88
B.4.1 Layer comparison 90

B.4.2 Degree and degree deviation 91

B.4.3 Neighborhood and exclusive neighboorhood 92

Bi44 Relevance oo 93

B.4.5 Distances 94

B.5 Community detection 94

C Meetup data 96

Executive summary

The objective of this deliverable is to present the definition of the adopted net-
work analysis metrics, code and quantitative analysis. These tasks were the
responsibility of the quantitative unit of the VirtEU project, led by Matteo Mag-
nani at Uppsala University and by Luca Rossi at the I'T University, Copenhagen,
and also including Davide Vega, Roberto Interdonato and Obaida Hanteer.

This report starts with a description of the theoretical framework on which
the quantitative analysis is based, positioning the results presented in this doc-
ument with respect to the objectives of other research units in the project (Sec-
tion 1: Introduction). The remainder of the report is organized into three main
parts.

Section 2 (Modelling online communities) and Section 3 (Analyzing online
communities) describe the way in which we mathematically represent online
social networks and the methods that we have developed to analyze them, in-
cluding algorithms to automatically identify communities, similarity metrics to
compare different aspects of the identified communities, as well as a visualiza-
tion method to make the results more accessible to the qualitative unit of the
project.

Sections 4 (MeetUp data analysis) and 5 (Twitter data analysis) present the
results of our quantitative analysis, that is, the application of the aforementioned
models and methods in addition to other traditional data analysis approaches to
identify and study online IoT communities in the MeetUp and Twitter platforms.
These sections also include some methodological reflections, and in particular
a critical assessment of the limits and opportunities associated to the two data
sources.

The last sections of the report give more details about the state of the art on
online conversation monitoring and community detection (Appendix A: Related
literature) and also include a description of the network analysis library where
we implemented the developed methods. This software library was used to
perform some of the analyses included in this document. The library, part of
which had been developed before the beginning of the VirtEU project, has been
extended with new algorithms and completely re-engineered, that is, most of
the code has been rewritten to be more extensible and to deal more efficiently
with the large datasets collected for this project. The full code is available
at the address https://cran.r-project.org/package=multinet and Appendix B
(The multinet library) describes the content of the library and how to use it,
following training workshops we have given at major conferences in the social
network analysis and computing areas (SunBelt and Social Informatics in 2018;
SunBelt and IC2S2 in 2019 — planned). In In Appendix C (Meetup data) we
list the MeetUp groups included in the analysis.

While this report mainly presents the results of the quantitative unit, the
results concerning the analysis of MeetUp and Twitter data have been obtained
through a close collaboration with members from the qualitative unit, as de-
tailed in the corresponding parts of the deliverable. Discussions with other
project members have also influenced the choice of which methods to focus on

and what features to support in the development of the methods. In addition,
some of the methods described in this report have been developed as part of col-
laborations with researchers not affiliated to the project. These collaborations
are acknowledged in the relevant parts of the report, where the collaborative
articles from which some of the content has been taken are referenced.

Part of the results of the quantitative unit have been described in previous
deliverables and have thus not been included in this report. In particular,
Deliverable 2.2 (Research synthesis), Section 2, describes the software platform
developed to collect data and to provide a set of data exploration tools to
the qualitative unit. All the data analyzed in this report has been collected
using the platform developed for the project. In addition, some preliminary
data analyses done by the quantitative unit have been included in Deliverable
1.2 (First year progress report), and Deliverable 1.3 (Mid-way report), Section
3. These previous documents include the analysis of the Twitter data from
specific IoT events, performed during the first year of the project to support the
qualitative unit. These analyses are not included in this report. In addition, the
aforementioned progress reports contain a preliminary analysis of what we call
the consolidated dataset, explained in more detail in Section 5. These analyses
have now been extended and completed, and are thus included in this report.

1 Introduction

This report summarizes the results of the quantitative unit of the VirtEU project
concerning the analysis of online data. We present the mathematical models we
defined to represent the data, the analysis methods we developed to extract
knowledge from these data representations, the software we designed and im-
plemented to do so, as well as the results obtained applying our models and
analysis methods to two sources that had been previously selected during the
first part of the project (MeetUp and Twitter). All these tasks were part of the
original project description and have been performed as planned.

Before presenting these results, it is important to understand their role in the
more general theoretical framework of the project. The next section summarizes
this framework and positions the activities of the quantitative unit with respect
to it. We then present the outline of the rest of the report and list the scientific
publications whose content has been partly included in the report, or that are
currently under preparation based on some of the content of the report.

1.1 Theoretical framework

In the upper part of Figure 1 we have indicated the main concern of the project,
that is, IoT. Based on fieldwork we have carried out into IoT spaces in Europe
and preliminary analysis of online discussions of IoT, we have identified that
ToT emerges as a socio-technical assemblage of different things, issues and ap-
proaches. More specifically, we have come to identify IoT as an assemblage of
1) things (connected devices and technologies), 2) practices (i.e. practices of
building connections between things and technologies) and 3) application con-
texts (e.g. smart cities, e-health, wearables and so on). Such a positioning of
IoT builds on the assumption that technologies are not neutral, and external to
the socio [e.g. human] and technical [e.g. things, technologies, network systems]
they are part of. Hence, the significance of the results presented in this report
is based on the assumption that the IoT is constructed by the actors and
communities of practice that define themselves as part of the IoT
ecosystem and the relations that sustain this assemblage.

As an example, whether sustainability or privacy will be values strongly as-
sociated with the IoT in the future might come to depend on whether these
are "matters of concern” for the main IoT actors and communities, and to the
relationship between these and other matters of concern of the actors and com-
munities. To simplify, if no one in the community of IoT developers thinks that
sustainability is an important value, then sustainability might not be embedded
in future IoT products. At the same time, even if developers are concerned
with sustainability, strong concerns on profitability and financial survival of the
startup could also prevent the design of sustainable products if this implies
additional costs that cannot be afforded.

Against this background it is then important to observe how different val-
ues (and not just the ones more clearly belonging to the ethical domain) are
discussed inside these communities and how they are expressed as matters of

Things | Practices | | Domains |

=
(-
_ N = p N |‘ &
1 o
1 1o
s 18
loT communities of practice - 1 3
: ¢ g
. I ’ 3

I ’

, \ -
[Actors mm = ==

Figure 1: Theoretical framework used in this deliverable.

concern.
In the VirtEU project, a significant effort has been put into fieldwork and
ethnographically studying the main IoT actors and communities. However, this
requires a lot of resources and can only allow a limited study of these commu-
nities in time and space. Therefore, the objective of our study of the online
information produced by IoT actors and communities is to complement the
qualitative information about matters of concern obtained through fieldwork.

1.2 Outline

In Section 2 we present the mathematical models we used to represent online
interactions between Twitter users. The basic model is the so called multiplex
network, where actors can be connected through multiple types of edges. This
is useful to represent the fact that Twitter users can reply to other users’ tweets,
or retweet them, or mention them. It is also useful to group online interactions
depending on the topic of the tweet. The topics, and thus the exchanged text,
are an important element given our objective of mapping matters of concern.
Therefore, starting from the multiplex network model, we have further extended
it including three fundamental elements to understand human information net-
works: the individuals (actors) in the network, the information they exchange,
that is often observable online as text content, and the time when these ex-
changes happen. These different aspects of the data are also called layers. We
present a simple, expressive and extensible model for temporal text networks,
that we claim can be used as a common ground across different types of networks
and analysis tasks. It is worth noticing that these models have been mainly
applied to Twitter data, as for MeetUp we do not have detailed information
about user-to-user interactions — in which case simpler tabular data representa-
tions have been used. However, the information collected from MeetUp is much
cleaner and easier to associate to the matters of concern of IoT community
users.

In Section 3 we present the analysis methods we developed for the afore-
mentioned models. In particular, in Section 3.1 we extend the popular clique

percolation method to work on multiplex networks. Our extension requires to
rethink the basic concepts on which the original clique percolation algorithm is
based, including cliques and clique adjacency, to handle the presence of multi-
ple types of ties. In Section 3.2 we show how simple data transformations allow
the direct application of analysis methods already developed in other domains,
from traditional data mining to multilayer network mining, to analyze tempo-
ral text networks and thus to identify communities of users characterized by
common discussion topics. Computing layer similarities is another important
way of characterizing multiplex networks because various static properties and
dynamic processes depend on the relationships between layers. In Section 3.3
we provide a taxonomy of approaches to compare layers in multiplex networks
that includes, systematizes and extends existing comparison functions, and is
complemented by a set of practical guidelines on how to apply them. Finally,
in Section 3.4 we introduce multiforce, a force-directed layout for multiplex
networks where both intra-layer and inter-layer relationships among nodes are
used to compute node coordinates. Despite its simplicity, this algorithm can
reproduce the main existing approaches to draw multiplex sociograms, and also
supports a new intermediate type of layout.

Sections 4 and 5 present the results of the application of the aforementioned
methods, together with more basic approaches, to data extracted from MeetUp
and Twitter. As we will see, the data from MeetUp provides a very good map-
ping with the theoretical framework presented at the beginning of this section,
and also allows us to observe the spatio-temporal evolution of the matters of
concern emerging inside this platform. Twitter data has been significantly more
difficult to analyze. Therefore in the dedicated section we indicate the theoret-
ical and practical difficulties we encountered on a large Twitter dataset and the
consequent collection and analysis of smaller and manually curated data, called
the consolidated data, that was also planned in the original description of the
project.

We also include two appendices. In the first we present an overview of the
literature related to the analysis models and methods discussed in the report,
while in the second we provide a tutorial-like description of the software library
used to performed some of the analyses. This library was re-engineered as part
of the project, including the implementation or testing of the methods described
in this report.

1.3 References

Some of the contents of this deliverable have been published in peer reviewed
books of proceedings and journals: the clique-percolation-based community de-
tection method [124], the multiforce visualization layout [41], the network com-
parison measures [18] and the model and methods for the representation and
analysis of online conversations in temporal text networks [125]. All the pub-
lished papers contain a significant amount of additional information, typically
in the form of theoretical and experimental analyses of the proposed methods,
that we have not included in this report to keep it compact. References to this

extended material are provided in the appropriate parts of the deliverable.

Parts of this deliverable have also been included in two papers currently
under submission: a survey journal article on community detection in multiplex
networks (for which some of the content has been taken from Appendix A) and
a technical article describing the software library used to produce most of the
results presented in this deliverable (roughly corresponding to Appendix B).
The material included in Sections 4 and 5 will be used in an extended form as
a basis for two journal articles presenting the results of our empirical analysis,
planned to be submitted for publication before the end of the project.

2 Modelling online communities

In this project the quantitative analysis of online communities has been initially
based on the models and methods from the discipline known as Social Network
Analysis. This discipline is characterized by the use of graphs, that is, nodes
and links connecting them, to represent social networks.

Simple social network models have been useful in the first part of the project,
e.g., to identify central actors associated to IoT events to be then taken into
consideration by the qualitative unit. For this kind of analysis, knowing who
is interacting with whom and how often is typically sufficient, and the network
analysis web-based platform we developed for the project provided such func-
tionality to be used by the other project members, including those without a
technical background in data analysis.

However, a simple network is not sufficient to reach the objectives of this
report. The fact that two actors are interacting does not tell us anything about
the matters of concern discussed by these actors, nor about the meaning of the
interaction. Therefore, as originally planned, for these more advanced anal-
ysis we used a richer data model allowing us to represent different types of
interactions. The multiplex network model, where each type of interaction is
represented as a distinct layer, is described in the next section.

Building on this, we later introduce an additional extension where different
layers represent either actors or the messages exchanged among these actors,
including their text and the time of the interaction. This model, that we call
temporal text network, has been specifically developed in the context of the
VirtEU project.

2.1 Multiplex networks

Multiplex networks provide a simple yet expressive way to model a wide range
of physical and social systems as sets of entities connected by multiple types
of relationships, that we also call layers following the terminology in [68]. For
example, a transport network can be modelled as a set of locations, such as
cities or streets, connected by different types of public transport like airplanes,
trains, and buses.

In this document we use the following definition of multiplex network:

Definition 1 (Multiplex network) Given a set of nodes N and a set of lay-
ers L, a multiplex network is defined as a quadruple M = (N, L,V, E) where
(V,E) is a graph, V C N x L, and if (n1,l1,n2,l2) € E then l; = ls.

An example of multiplex network is shown in Figure 33, where £ = {l1,[2},
N = {ny,...,ng}, and (n1,l;,n2,l1) is an example of an edge in E. In the
literature alternative terminologies are used, and here we adopt the one in [68],
according to which we would say that node n; is present in both layer /; and layer
l>. In the literature some extended multiplex models have also been proposed,
allowing multi-dimensional layers [68] and one-to-many relationships between
nodes in different layers [83], but we do not consider these extensions here.

Figure 2: An example of a multiplex network consisting of two layers, six nodes,

and ten edges.

Please note that the original definition of multiplex network introduced in
the field of Social Network Analysis was more restrictive than the one adopted
in this report. In particular, our definition allows some of the nodes not to be
present in some layers. For example, (ns,ls) ¢ V in Figure 2. In some cases,
when the term multiplex is used it is assumed that all nodes are present in all
layers, and this assumption will often affect the result of layer comparisons. To
avoid confusion, in this case we explicitly talk about a node-aligned multiplex
network [68] and when it is not clear from the context we will call a multiplex
network that is not node-aligned a generalized multiplex network.

Definition 2 (Node-aligned multiplex network) A node-aligned multiplex
network is a multiplex network (N, L,V, E) where Vn e N1 € L: (n,l) € V.

g n2 M3 Ng N5 Ng ny N2 M3 N4 N5 TNg
ny | 0 1 0 0 1 0 ny | 0 0 0 1 0 0
N9 1 0 1 1 1 0 N 0 0 1 1 0 0
ng | 0 1 0 1 0 0 ng | 0 1 0 1 0 0
N 0 1 1 0 0 0 N 1 1 1 0 0 0
ns | 1 1 0 0 0 0 ns | 0 0 0 0 0 0
neg 0 0 0 0 0 0 ne 0 0 0 0 0 0

(a) Al1 (b) A12

Figure 3: Adjacency matrices for both layers of the multiplex network in Figure
2

Multiplex networks have usually been represented as a set of adjacency ma-
trices Ay, one for each layer [, where a;(n1,n2) = 1 if there is an edge between
node n; and node ny in layer I, a;(n1,ng) = 0 otherwise. The adjacency matrices
for our the example in Figure 2 are shown in Figure 3.

The representation of multiplex networks using adjacency matrices, as in
Figure 3, is not the most appropriate to define similarity measures, for two

10

main reasons. First, it is incomplete, because it only allows representing node-
aligned multiplex networks. An example of why this is important is the case
of online social media, where each layer represents a different service (Twitter,
Facebook, etc.) and it makes a difference whether a user has no connections on
Twitter or does not even have an account there. In the example in Figure 2, we
would lose the information that nodes ns and ng are present in different layers.
Second, adjacency matrices present an edge-oriented view over the multi-
plex network, which might be the reason why most similarity measures in the
literature have been limited to edge similarity. If we take a broader look at
empirical networks, we can see how other structures can be relevant. As an ex-
ample, if we look at Figure 33 we can see that the triangle {na,ns, n4} is present
in both layers. Unfortunately, this is not obvious from the adjacency matrices
and would require checking several disparate entries making definitions more
complicated than needed. Therefore, in the following, we use network represen-
tation targeted to the specific properties we want to consider when checking the
similarity between layers. We call this representation a property matriz.

Definition 3 (Property matrix) A property matrix P is a matriz where:

1. the columns correspond to a set S of network structures (nodes, edges,
triangles, ...),

2. the rows correspond to a set C of contexts where these structures are ob-
served (layers, groups, snapshots, ...), and

3. ps,c 5 the value of an observational function mapping each pair struc-
ture/context into a number (degree, distance, ...).

In the following we will only use layers as contexts, that is, C' = L. In
summary, each cell p, . of a property matrix contains the value of the function
describing the structure s (for example, a node) on layer ¢, and different obser-
vational functions can be used to define different types of similarity. Examples
of property matrices for our working example are shown in Figure 4.

Given a structure s, we can further summarize its presence in the network
by summing over all the values in p®, computing their standard deviation or
performing any other kind of aggregation (sum, avg, median, min, max, etc.).
As an example, from a node-degree property matrix (Figure 4b) we can obtain
the total degree of a node in the whole multiplex network (sum) or its so-called
degree deviation [12], which is 0 if a node has the same number of connections
on all layers and higher when a node is present in different layers with different
degrees, and so on. In summary, property matrices provide a more general
and informative representation of multiplex networks than adjacency matrices
— which are still useful when the objective is just to know about the edges
in a node-aligned network. Property matrices also allow us to provide simple
and general mathematical definitions of different ways to compare layers, which
will instantiate into several existing and new measures when specific property
matrices are used.

The notation used to represent multiplex networks is summarized in Table 1.

11

N1 Mg N3 Ng N5 TN N1 N2 N3 Ng Ny 6
h| 1 1 1 1 1 0 Ll12 4 2 2 2 NA
Ir| 1 1 1 1 0 1 Iy | 1 2 2 3 NA O

(a) Nodes, existence (b) Nodes, degree

ny ng M3 nNg Ny Ng (n1,n2) ... (n2,n4)
L2 1/3 1 1 1 NA [1 .. 1
lr | 1 1 1 1/3 NA 0 Iy 0 e 1

(c) Nodes, CC (d) Dyads, edge existence (clique)
ni, N2, N3 ni,Ng, N5 niy, N2, Ne N2, N3, N4
I 0 . 1 . 0 ... 1
lo 0 e 0 e 0 e 1

(e) Triads, triangle existence (clique)

Figure 4: Property matrices for our working example in fig. 2. Each property
matriz is defined by a type of structures (nodes, dyads, triads, etc.), the con-
texts (layers) and an observational function (existence, degree, forming a clique,
distance, etc.)

2.2 Temporal text networks

Multiplex networks provide a richer data representation than the one offered by
simple networks, but are still not sufficient to study online conversations. To
this aim we define a multi-layer network model also including text and time,
that we call temporal text network.

In our opinion, a good model for temporal text networks should be general
enough to be able to represent a wide range of systems, but also contain a mini-
mal number of modeling constructs, to make the model easier to use and study.
In other terms, a good compromise should be found between expressiveness and
simplicity. In addition, given the large number of existing models that have
been used for a long time to describe specific aspects of temporal text networks,

Table 1: Terminology and notation

Symbol Name

N set of nodes {n1,na,...,n|n}

L set of layers {l1,l2,...,0 |11}

P property matrix

C set of contexts (e.g., network layers, snapshots, groups)

S set of structures (e.g., nodes, edges, dyads, triangles)

Pe property vector for context ¢ € C

p’ property vector for structure s € S

Ds,c property of s in ¢ (e.g., degree of node s on layer c)

pcr,s p restricted to contexts in C' C C and structures in S’ C S

12

we believe that both the modeling constructs and the terminology used in our
model should be as aligned with previous work as possible. Following these
design principles, we propose the following definition of temporal text networks:

Definition 4 (Temporal text network) A temporal text network is a triple
(G, x,t) where:

1. G = (A, M, E) is a directed bipartite graph, where, A is a set of actors,
M is a set of messages, and E C (A x M) U (M x A).

2. x: M — X, where X is a set of sequences of characters (texts).
8. t: E— T, whereT is an ordered set of time annotations.

and where the following constraints are satisfied:

1. Ym € M, in-degree(m) = 1.

2. (a;,m),(m,a;) € E = t(a;;m) < t(m,a;).

In our model edge directionality indicates the flow of text in the network:
(a;,m;) € E indicates that actor a; has produced text m;, while (m;,q;) € E
indicates that actor a; is the recipient of text m;. Actors with out-degree
larger than 0 are information producers, actors with in-degree greater than
0 are information consumers, and actors with both positive in- and out-degree
are information prosumers.

Text is represented as a combination of a text container (m € M), and a
textual content (xz(m)). As a consequence, actors in our model do not only
generate text, but produce text messages. Two text messages (for example, two
tweets, or two emails) may be different messages even if they contain the same
text and have been exchanged between the same actors at the same timestamp.

The third key component of temporal text networks is the time attribute ¢.
In our model, time is defined based on a generic set of ordered time annotations
T. This enables the adoption of several ways of representing time: as an absolute
date-time, as a relative date-time, as a timestamp with an arbitrary format or
as a discrete time interval if time has been sliced into time windows as it often
happens when temporal networks are analyzed.

When writing about the model’s elements, we will sometimes use a concise
notation. For example, we will sometimes write an edge and its time together, as
in: (a;,m;,tq), where tg = t(a;, m;), and we will sometimes write a message by
also indicating its sender, its recipients and its text, as in: (as, m;, {ar,,...,ar, },
“text”), where “text” = x(m;). Finally, when all the timestamps on the edges
adjacent to a message are equal, we can also add a time to the previous notation,
as in: (as,mj, {ar,...,ar, }, “text” tq).

While very simple, the model introduced above can be used to represent a
range of different forms of communication and data from different sources. In
particular, by explicitly dividing the network nodes into actors and messages,
their relations implicitly carry more information. For example, whether the type

13

of communication implemented by a message is unicast, multicast or broadcast
is indicated by the out-degree of the message.

With unicast a message such as a handwritten letter is sent from a sin-
gle source to a specific target. This form of written communication has been
preserved to the present day through instant messaging services such as those
offered by Twitter, Facebook Messenger or Whatsapp and, more traditionally,
using the electronic email. Unicast communication allows to keep some text pri-
vate between two actors, but it can have a large overhead if the same text must
be sent to multiple sources because it requires an individual message for every
recipient. In order to reach a larger population it is sometimes preferable to use
broadcasting or multicasting. In the former, the message is transmitted to
all possible receivers!, while when the information is addressed to a group of
people but not to all possible receivers, such as a post on a Facebook wall, the
communication is called multicast.

Figure 5 shows these different types of communication represented using our
model.

A A A A
S m2 " M2
B . B~ . B B
M1 M1
G G c c
Py .
M3 M3
D D D D

(@) (b) () (d)

Figure 5: Models for different types of communication. a) unicast from
A to C; b) unicast from A to B, C and D; ¢) broadcast from A — which can
also be implemented as in the previous case if z(M;) = x(Mz) = x(Ms3) and ¢)
multicast from A to C and D.

Figure 6 shows an example of how a multicast communication through email
can be modeled as part of a temporal text network. The resulting network in-
cludes the sender of the message (User A) and two other actors (User B and User
C) who where explicit recipients of the message. The fourth vertex M; € M
represents the email and x(M7) corresponds to its text content (the subject line
and the body content). In this case, the time attribute associated to each one of
the edges represents the time when the message was delivered or received by the
SMTP and POPS3 servers allowing us not only to represent the communication
flow, but also the effect of the channel and/or medium. Representing multiple
emails as in the example above would lead to a full temporal text network.

One of the design principles we used to define our model was simplicity, to

IFor simplicity we use the expression “all possible receivers” to refer to the community in
which the information is spread, independent of whether the community is the whole Internet,
the whole world or a set of members registered to a private site.

14

Text

SUBJECT: Loren Ipsun

Lorem ipsum dolor sit amet, consectetur adipiscing elit. In vel
lorem lectus. Maecenas egestas ex eget nisl dapibus, at
maximus neque ultrices. Nunc nec ex mattis, pretium felis
cursus, efficitur elit. Sed sagittis hendrerit est, efficitur
tincidunt massa congue vel.

MESSAGES
a

Cras eu elementum diam. Vestibulum tempus, nisl vel
ullamcorper congue, ipsum augue sollicitudin ipsum, a
convallis ligula dui eu magna. T

USERS
>
(o]

Figure 6: Model of a multicast email as a temporal text network. The
entire text content of the email — including the subject line and the body —
are encoded as a single message M;. The sender of the email (User A) and the
two friends — User B, User C — are modeled as individual actors. In this
case, the ingoing and outgoing edges of the message contain a different time,
indicating the delivery and receipt timestamps registered in the email servers.

make it tractable and general. On top of the basic model defined above, we can
also easily add extensions to fit context-specific requirements.

With regard to the structure, we can straightforwardly add edges between
messages to represent either information available from the data such as retweets
on Twitter, or information deduced from the analysis of the data such as links
indicating that one message is probably an answer to another, if we want to
study information flows. Figure 7 shows, for example, the modeling process of
a blog post M7 and the associated comments from the readers { My, M3, My}.
In this particular case, we know the identity of each one of the authors, because
they are authenticated in the web platform, but we do not know exactly who
are the recipients of their comments. While we can assume by context that the
blog post M; was read by follower B and that her message was then read by the
blog owner A, it is uncertain what the third user (follower C') has read. We only
know that the text produced by user C' is a reply to the previous comment M3,
but we cannot infer if he has or has not read the previous messages M; and Ms.
One possible way to model such scenario is to represent the relation between
messages instead of the relation between messages and receivers. Similarly,
in the example of Figure 8 the edges between messages are used to represent

15

Text + Attributes

User A (blog owner)t ¢ June. 13 1

Lorem ipsum dolor sit amet, M2
consectetur adipiscing elit. Cras
varius eleifend tortor, eget maximus
turpis consectetur at. Morbilorem M1 A
velit, elementum nec sapien quis, porttitor ornare mi.
Aenean et erat consectetur, fringilla mi vel, sagittis lacus. Sed
vel nunc nec mi pretium finibus sagittis nec erat. g A M3 M4
b
b4
] 4
=
T1
T3 T2 Ta

USERS

nec. In hac habitasse platea dictumst.

Figure 7: Model of a blog post as a temporal text network. The original
data set contains a blog post M; and three comments (M, M3, My); which are
encoded as three individual messages. The three participants on the discussion
— User A, Follower B, Follower C'— are modeled as individual producers. In
this case, the edges of the messages indicate the relation between their content.

retweets on a micro-blogging platform.

As we discuss in Section 3, this type of extension would nicely fit our anal-
ysis framework where one main class of operations transforms the data into a
multilayer representation. Similarly, we may add edges between actors indicat-
ing other types of relations relevant for the analysis of the human information
network such as indirect recipients. Figure 8 shows the modeling process of
Twitter as a temporal text network. Unlike the previous communication chan-
nels we discussed, in Twitter the recipients of the information are encoded in
the text of the messages rather than being explicit in the metadata (e.g., the
edge (M;, B, t1) exists because actor A mentions B in the first message of the
data set). In addition, Twitter users can also see messages from other users they
are following, which in our model is represented by the actor-to-actor relations.
This difference between intra- and inter-layer relations allows us to differentiate
between direct and indirect communication in many social platforms.

In our basic model x represents a generic string of characters over some
alphabet, whose interpretation will depend on the source of the data and the
context of the analysis. For example, while the symbol # usually denotes the
start of a filtering tag in online social networks such as Twitter or Instagram,
in other media sites it is just an acronym for the word “number”. Therefore, for

16

Retweet

o
H M1 T2
3 A T3
a .
£ \
___________ /Tl
) 0 . _— e i e — e e e —
b 1 Is there any differemeé'@'ﬂ{e‘r'c'::e(ween #health & !
\, 2/ #wellbeing? #LTW #TodaysThought g / : Y
s 2
+ roo A - : D
i Followers / Following profile info . N
. R B 4
i 4 - ¢

i@UserDils there any difference!@U

#health & #iwellbeing? #LTW #TodaysTh

Figure 8: Model of a Twitter network as a temporal text network. The
entire content of each tweet — including hashtags, urls and retweeted content —
are encoded as messages. Senders — @A, @D — and mentioned users — @B,
@C, @D — are modeled as individual actors. In this case, both the ingoing
and outgoing edges of the message contain the same time, which indicates when
the tweet has been sent. The edge between M3 and M, indicates the retweet
relation between both tweets.

specific application contexts additional attributes can be added for example to
messages by providing special information, such as the hashtags included in the
text in the case of Twitter (see Figure 8). In particular, we can think of having
three types of information associated to each message:

1. The text, as in our basic model,

2. Metadata that is available in the specific data source used for the analysis,
such as links to other resources (webpages, other tweets or multimedia
content), like and retweet counts, or hashtags.

3. Additional information not directly available from the data source but
obtained analyzing the text, for example through topic analysis.

Different types of temporal information have been used in existing works on
temporal networks and temporal text analysis (see Appendix A.1). For example,
time can represent actions from the users such as the time when a message
is posted and/or the time when it is read as we did in the Twitter example.

17

Alternatively, times can be used to represent a physical property of the channel,
as it happens in computer networks when there can be a transmission delay from
the source to the destination of a message (See Figure 6). Finally, time can also
be associated to the message, indicating for example the time interval when the
message exists. Furthermore, this information can be complete or incomplete,
so that if only the initial time of the interval exists we must assume the message
is still valid at the time of analysis as we did when we described the blog posts;
it can be private (accessible only to specific actors) or universally accessible by
everyone.

18

3 Analyzing online communities

3.1 Community detection in multiplex networks

Community detection is one of the most popular social network analysis tasks,
for which a large number of algorithms have been developed [43, 27]. The
number of existing methods is not only justified by the importance of this task,
but also by the absence of a unique definition of what a community is: different
algorithms are often designed to identify different types of communities, and it
is thus practically important for a social network analyst to have a toolbox with
alternative algorithms.

The clique percolation method [96] is based on the intuition that the presence
of a community can be observed in a social network through the presence of
cliques, that is, sets of actors who are all adjacent to each other. This method
has a set of features that make it well-suited to the discovery of communities
in social networks: (1) it allows to specify how much connectivity is necessary
to recognize the presence of a community (minimum clique size k), (2) it allows
the same actor to be present in multiple communities (overlapping), and (3) it
does not force all actors to be part of a community (partial).

In this section we extend the clique percolation approach to deal with mul-
tiplex networks, to add clique percolation and the special features of its com-
munities to the multiplex network analysis toolbox.

3.1.1 Clique percolation

The clique percolation method was introduced by Palla et al. in 2005 [96]. For a
given k, CPM builds up communities from k-cliques, that is, complete subgraphs
in the network with k vertices. Two k-cliques are said to be adjacent if they share
k — 1 vertices. A k-clique community is defined as a maximal union of k-cliques
that can be reached from each other through a series of adjacent k-cliques. In
general, if the number of links is increased above some critical point, a giant
community would appear that covers a vast part of the system. Therefore, k is
chosen as the smallest value where no giant community appears. CPM allows
overlapping communities in a natural way as a vertex can belong to multiple
cliques. Figure 9 shows an example of how CPM works. Given an input graph,
first maximal cliques are identified, then adjacent cliques are grouped together
to form communities.

3.1.2 Multiplex clique percolation

Our extended CPM algorithm for multiplex networks (CPMM), of which we
describe an implementation in the next section, follows the same main general
steps of CPM. However, the concepts on which it is based must be extended to
multiplex networks. In particular, we need to define what a clique on multiple
edge types is, when two multiplex cliques can be considered adjacent, and how
adjacent cliques should be grouped to build communities.

19

1) cl - c2 D c3 3
[\3 —D o/ ’\3 Z%
A/ 43 2= YP°
< \§<%" c4 @ | c6 3 ¢
8\‘ ‘/,\/“ % 3\ /7; \
] N \5\1 \ / [\0\ _
Q) 0) '8) 6 (9 — e
O ®) NV ‘\9/ 2
(a) Input graph (b) Maximal cliques (c) Clique adjacency
(d) Adjacency-connected groups (e) Corresponding clusters

Figure 9: A step-by-step view of the original clique percolation method

Cliques on multiple edge types While a clique on a simple graph is a well
understood structure, defined as a set of vertices that are all adjacent to each
other, the same concept can be extended in different ways for multiplex networks
depending on how multiple edge types are allowed to contribute to the clique
connectivity. Considering a specific set of edge types, we might require that a
clique contains all the possible edges on all these edge types. In other words, a
clique is formed by a combination of cliques on individual edge types. We refer
to this type of cliques as AND-cliques.

Definition 5 (k-m-AND-clique) Let L;; be the set of edge types between ver-
tices i and j. We define a k-m-AND-clique as a subgraph in the multiplex net-
work with k vertices that includes a combination of at least m different k-cliques
from m different edge types. In other words, a k-m-AND-clique is a subgraph
with k vertices C' where

| () Lul=m (1)

i,j€C

Similar to the case of cliques on simple graphs, we can define a concept of
maximality for cliques in multiplex networks, where neither & nor m can be
increased.

Adjacency and communities When cliques may exist on different edge types,
the concept of adjacency should also consider this aspect.

To illustrate why, consider a definition of adjacency where k-m-AND-cliques
only need to share k—1 vertices to be considered adjacent. As shown in Figure 10
(Ihs) adjacent cliques do not necessarily share any edge types on all pairs and

20

™
— a

()) m“\' _,
7 N7
of Gl %) J- @

3 s

£ ~
\/ \\ ~(
N __/

(a) (b)

Figure 10: Adjacent cliques

they might share edge types only on their common pairs of vertices. It is worth
noting that more diversity among the edge types in external connections of
adjacent cliques results in denser internal connectivity. In addition, cliques
at distance one still have to share some edge types on some of their pairs of
vertices, as in the figure, but when the distance between cliques becomes greater
than one, as in Figure 10 (rhs), they may end up having completely different
edge labels. To enforce uniformity among edge types throughout the whole
community, we thus need more constraints than what we can define at the level
of clique adjacency.

Definition 6 (Multiplex clique-based community) A multiplex clique-based
[(k — m)-AND-clique](ms mry community is the mazimal union of m’-adjacent
k-m-AND-cliques where all cliques share at least m” edge types on all of their
pairs of vertices.

Please notice that this is a very general definition, and in practice we can

just use two parameters: k and m(= m, m’, m").
Algorithm In Figure 11 we have sketched an algorithm to detect communities
according to our definitions, where without loss of generality we will assume that
m = m' = m”. The details of the algorithm, including pseudo-code, are given
in [124], and the algorithm is available in the library described in Appendix B.

The algorithm is divided into three parts, as in the original method: finding
cliques, which can be done using an extension of Bron—-Kerbosch’s algorithm,
building the adjacency graph, and extracting communities.

In a simple graph, each clique is included in exactly one community, there-
fore, communities can be identified from a clique-clique overlap matrix (see [?]
for the details). However, this statement is not necessarily true for k-m-AND-
cliques and the corresponding communities. Because of the more complicated
relations between cliques, instead of the overlap matrix used in the original
method we generate an adjacency graph as in Figure 11. In the graph we have
indicated for each vertex the edge types where the corresponding clique is de-
fined.

Two cliques can be included in at least one community if: (1) there exists a
path between the corresponding vertices in the clique-adjacency graph, and (2)
for all vertices in the path the corresponding cliques share at least m edge types
on all of their pairs. Therefore, each community corresponds to a maximal tree
in the clique-adjacency graph where condition (2) holds.

21

Figure 11 shows all the maximal trees from our clique-adjacency graph for
m > 1. As we see, clique ¢4 can be included in three communities: C1, C2 and
C3. No new clique can be added to these sets without reducing the value of m
for which the cliques’ constraint holds. As an example, community C4 satisfies
the cliques’ constraint for m = 2. Adding any adjacent clique to it, like ¢3, c5
and c6, the constraint would no longer hold for m = 2 because only one edge
type would be common for both cliques. In Figure 11 for each maximal tree
we have indicated the edge types where the constraint is satisfied, and we also
show all communities in this example for m > 1.

067 .
) 'a—| @

& J 1\6\‘
Ot

6/

(b) Maximal cliques

c4

(d) Maximal adjacent structures

(f) Clusters

Figure 11: A step-by-step view of our method

3.2 Community detection in temporal text networks

One reason to adopt a common model instead of defining ad hoc models for
each application is to reuse existing analysis methods. While temporal text
networks can be analyzed directly, for example studying dynamical processes
such as text propagation in a similar way as in our motivating example, we can
consider other strategies. Here we define two more approaches that can be used
to analyze temporal text networks: we call them continuous and discrete.

The practical benefit of using these two approaches is that instead of de-
veloping new algorithms the analyst can focus on defining mapping functions
encoding the model in a way that fits the data and analysis at hand. Then, these
functions automatically generate model views on which existing algorithms can
be computed.

22

3.2.1 Continuous analysis

The main idea behind this approach is to map the elements of the network (e.g.,
actors, messages, content, etc.) into an asymmetric metric space. This means
that it is possible to compute distances between them.

Once distances are available, one can directly reuse existing data analysis
methods for metric spaces, such as traditional distance-based and density-based
algorithms (k-means, db-scan, etc.). Distances can also be used to retrieve rele-
vant information from large temporal text networks, specifying an information
query as an element of the metric space and retrieving those elements that are
the closest. We present an example of this last type of analysis in the next
section.

The first way of doing this is to use a network embedding method [48].
While network embedding was initially defined for simple graphs, more recent
algorithms can be directly applied to attributed graphs [54]. Meanwhile, we
foresee the definition of special versions of these algorithms that are specific
for temporal text networks. Figure 12 shows an example of this first type of
translation, where messages are the target of the analysis. The same approach
can also be used to study other structures and elements in the temporal text
network such as actors or combinations of actors and messages.

M3] d(t, t)
M ms
M4

Figure 12: Continuous approach: embedding. (left) A temporal text net-
work with 6 actors — circles — and 5 messages — squares; (right) the messages
have been grouped into two clusters based on their topological, temporal and
textual distance. The point marked with ¢ represents a user’s information re-
quirements; in this example the left cluster (mq,ms,m3) contains nodes that
are more relevant for the user.

The second way to use the continuous approach is to directly define a dis-
tance function, without any explicit embedding into a coordinate system, so
that the points form a metric space but have not an explicit position: only their
relationships are defined. This approach is represented in Figure 13.

The two approaches may look similar: in both cases algorithms use distances,
which can be computed after an embedding or are directly defined in the distance
matrix. In practice, however, there can be relevant differences. For example,
after embedding it is easier to index the data so that not all distances must be

23

M3
N:l 5 M1 M2 M3 M4 M5
™4 B
M2 i M1 0154 002 0028 0154

—_— e e =N e = M2 | os 0641 0505 04s8

E M3 | 0215 oss0 0939 0863

c F M4 | 0073 o154 093 o

B o M5 [osss os01 oses o7m

Figure 13: Continuous approach: distance-based. (left) A temporal text
network with 6 actors — circles — and 5 messages — squares; (right) a messages’
distance matrix is obtained from the network topology and time attributes.

computed when algorithms are executed, leading to lower computation time.
On the other hand, the direct usage of a distance function is more natural
if distances are asymmetric, e.g., when d(M1, M2) # d(M2, M1). Asymmetric
distances often appear in temporal and directed networks, that are both features
of our model.

3.2.2 Discrete analysis

The main idea behind this approach is to encode temporal and textual informa-
tion into network structures, in particular layers in a multilayer network, so that
methods from multilayer network analysis can be directly applied [68, 33]. This
can be done by defining a mapping function from time and text into a discrete
set of classes that are relevant for the analysis. Then, topic-and-time-based
user centrality, topic-and-time-based relevance, as well as community detection
algorithms can be used. An example of this last type of analysis on real data
follows in the next section.

Textual discretization is typically performed using methods from Natural
Language Processing such as topic, sentiment or semantic analysis. The main
objective of the procedure is to group together messages whose contents have
similar characteristics. Time discretization is apparently simpler, because only
the cutting points between time slices must be indicated. However, also time
discretization presents many options. First, there are often many ways of defin-
ing the cutting points, leading to different results. Second, after the cutting
points have been defined there can still be different ways of distributing net-
work structures into the slices. For example, if we want to discretize messages,
we can place a message m; in a specific interval (¢,,%,) either if the incoming
edge e = (vj,m;, t) exists in the interval (¢,, 1), if all the edges from/to m; exist
in the interval, if at least one of the out-going edges e = (m;, v;,t) exist in the
interval, etc. Finally, we use the term multiple discretization when both textual
and time discretization are applied together to generate the different groups.

Under this procedure, our model would produce a k-partite network with one
partition for each new cluster of messages and one partition for the actors. The

24

s

M3 M3

s

w1 1 M1
1 va s 1 w4

Figure 14: Textual discretization. (left) A temporal text network with 6
actors — circles — and 5 messages — squares; (right) the network has been
discretized into two clusters — the top one with 2 messages, the bottom one
with 4 — based on the topic of the messages.

procedure to generate such network is straightforward once the discretization
function is defined. Figure 14 shows an example of textual discretization where
the resulting 3-partite network contains the original layer of actors A, and two
message layers with 2 and 4 messages each grouping together messages about
the same topic. In this particular example, x(M4) was related to both topics,
therefore the message M, appears in both layers. A similar network structure
will emerge from time discretization.

An additional operation on multilayer networks that can be applied to the
discretized data is projection, creating edges in one layer based on the informa-
tion present in another layer. In the resulting multilayer network, a new edge
eyj] = (v;,v;) is created if there is a message my, in the partition { € L of the
original network with: a) an edge (v;, my) from actor v; to message my and b)
an edge (my,v;) from message my to actor v;. Weights can also be added to
the new edges, using various methods. Figure 15 shows one possible projection
from the network in Figure 14. In this example the content of the messages
(and more in general also the time) are now encoded into the relations between
actors.

The main advantage of using a projected multilayer network to analyze tem-
poral text networks is the vast available literature that has targeted this type of
data. In Section 5.2 we use the approach described above together with a clus-
tering algorithm for multilayer networks to find communities of actors discussing
about the same topics during the same time spans.

3.3 Comparison of layers

Several studies have investigated the connection between layer similarity and
other properties of the network. For example, we know from previous research

25

Figure 15: Projection. (left) A projection of the message layers into the actor
layer in the original bipartite network in Figure 14-left. The projected multilayer
network has 6 actors, 12 nodes and 5 weighted edges; (right) a similar projec-
tion using the 3-partite network described in Figure 14-right which generates a
multilayer network with 6 actors, 18 nodes and 7 weighted edges.

that the relationships between layers have an impact on dynamic processes
such as behaviour and information diffusion [110]. In the VirtEU project, layer
similarity measures have been used to compare Twitter datasets from different
IoT events (as described in the previous deliverables with status reports) and
are used to compare online conversations on different topics, where each topic is
represented as a layer in a temporal text network, as in Section 5 of this report.

Being able to measure relationships between layers is also essential to validate
models aimed at explaining the formation of empirical multilayer networks [84,
90]. While the problem of comparing different networks has been thoroughly
investigated in the literature, the problem of quantifying layer similarity where
the same nodes can be present in multiple layers (which characterizes multiplex
networks) has not been studied in a systematic and comprehensive way so far.

In the literature, we can find a large number of works using layer similar-
ity measures, but most use them as a tool to study other phenomena such as
multiplex network generation [64, 84, 90], link prediction [1, 105] and spread-
ing processes [110]. As a result, different works use the same or very similar
approaches presented with different names, the relationships between several of
these similarity measures have not been explored, and there are no guidelines on
how to quantify layer similarity in multiplex networks, e.g., how to choose the
appropriate measure given a specific dataset. In addition, various potentially
useful layer comparison measures have not been considered yet.

Therefore, in this section we define a set of layer comparison measures. This
is part of the content published in [18], we also provide an empirical study of
the relationships between different measures, compared on several real datasets.

3.3.1 Layer similarity functions

Given a property matrix P where each row represents a layer, we can compare
two layers in three main ways. The first is to summarize each row using an

26

aggregation function f and compare f(p;,) to f(ps,). For example, if the prop-
erty matrix contains node degrees we can compare the layers’ average degrees
mean(p;,) and mean(p;,). Comparing the distribution of values in p;, and py,
is the second way to compare layers. As an example, we can compare degree
distributions on different layers and find that both fit well a power law distri-
bution with the same exponent. The third way is to compare p,;, with p,;,
for all s. As an example, we can compute degree correlation to check whether
nodes with a high (resp., low) degree on one layer tend to have a high (resp.,
low) degree also on the other layer.

Comparing aggregations of layer property vectors This first class of com-
parison methods is based on comparing f(p;,) to f(pi,) using various functions
(f) aggregating each layer into a single value. Typical choices are basic sta-
tistical summary functions such as mean, max, sum, skewness and kurtosis,
combinations of the simple statistics, such as the coefficient of variation (the
ratio between the standard deviation and the mean), the Jarque-Bera statis-
tics (a combination of skewness and kurtosis), or the Shannon entropy of the
distribution. These methods are summarized in Table 2.

Then, given f(p;,) and f(p;,) we can compare them, and in our experiments
we have used their relative difference, i.e. 2 - (|f(pi,) — f(p))/(If(p1y)] +
|f(pe))-

Notice that depending on the property matrix these measures correspond to
various existing network summaries. For example, the mean function may return
the average degree (when applied to property matrices about node degrees,
or the global clustering coefficient also known as transitivity index (for node
clustering coefficients), or the average path length for property matrices about
dyads and geodesic distances (which in the field of chemistry coincides with the
Wiener index).

Whether the multiplex network is node-aligned or not, does not pose any
problems regarding the computation of the functions in Table 2. These functions
are computed for each layer, only for the nodes existing on the layer, so if
some nodes are not present they are just not considered in the computation.
Similarly, also the measures in Table 3 can be easily computed for node-aligned
and for node-non-aligned as the the frequency distributions are computed layer
by layer. However, the results of the function and of the comparison can be
strongly affected by the alignment, as shown in [18].

Comparing distributions of layer property vectors

While using a single value to compare layers can provide some useful knowl-
edge about the multiplex network, for example by highlighting the presence of
denser or more clustered layers than others, looking at the whole distribution
of values in the property matrix can reveal other types of relationships among
layers. From a statistical point of view, some ways are open to pursuing this
task. The first one consists in comparing the moments of two distributions. For
example, it is possible to compare the first four moments, even if from a theo-
retical point of view this is not completely sufficient. Another possible approach
consists in comparing the distributions directly. In this case, we have to apply
to each property vector a function fr(p;) that derives the relative frequency

27

Table 2: Summary of common aggregation functions for property matrices

Name Function
Ps.i
mean(p;) mzr‘*d(pl)
(ps,i—mean(p;))?
Sd(pl) ZQ cizrd(pl) :

R (s, —mean(p;,))3

skew(p;) cardpsdp®
_(ps,y—mean(p1))
kurt(pl)]%ard(pl)sd(Pl)‘l
entropy(p;) Zk(:l)f’f‘k,l log fri.
sd(p;
CV(py) Tean(or) .
Jarque — Bera(py) %(Pl) (Skew(pl)2 + W

fri, is the relative frequency of the k-th value of the property
vector p; in a generic layer [

distribution. In case of discrete distributions, such as the degree distribution,
given a property vector p; we derive the disjoint values py;, k =1,..., K, and
we associate to each value the relative frequency fry ;.

In case of continuous distribution, or in case of very large networks in which
also the discrete distributions take a wide range of values, the function fr(p;)
derives histograms. We first divide the range of values of the property vector
into K equal interval, or bins, [b(_1), bx], with by being the minimum value in
the property matrix and bx; being the maximum value in the property matrix?.
Then we associate the relative frequency fry to each interval. Note that the bins
of all histograms for all layers must be the same. Then we have to compare only
the relative frequency distributions. This procedure is very fast and efficient
also for very large networks.

Given the frequencies or histograms, in order to compare two layers we can

use the distance between observed distributions based on distance between his-
tograms, namely, the dissimilarity index (ID), the Kullback-Leibler divergence
Dk, the Jensen-Shannon divergence D ;g or the Jeffrey divergence D, as de-
fined in Table 3. In the following, we do not consider the Jeffrey divergence, as
the Jensen-Shannon divergence is its smoother version. Note that this kind of
comparison can be made both for node-aligned and for not node-aligned multi-
plexes.
Comparing individual structures The main feature of multiplex networks is
that the same structure can be present or not, and have different characteristics,
on each layer. For example, a node can be present in one layer and not in the
other, or the same node may have different degrees depending on the layer.
Therefore, a peculiar set of measures to compare layers relies on the comparison
of the structures of interest, one by one.

2If we only compare two rows, we can also choose the minimum and maximum values in
those rows.

28

Table 3: Main methods to compare distributions across layers

Name Notation Function

— r
Dissimilarity index ID(py,,pi,) I e ey — fris|

Kullback-Leibler DKL(pzl, plz) Zszl fri, log ;:i;;

K
Jensen-Shannon D;s(piy,Piy) %(Zk:l fri, log f;:’kll + fri, log %)
K Fri ’ K) 'f ,
Jeffrey Dy(pi:P) Yoy Srea log il + 304 fra, log

A T +fr
where: fr, = Irey Hiriity k‘“2f kida

Two main cases are possible. In property matrices indicating the existence
of different structures on the different layers, we only have two values, 0 and 1.
While represented as numbers, these are in fact just nominal values indicating
that the structure is present on the layer. For these binary matrices specific
methods can be used, checking the overlapping or more in general, the common
existence (or common absence) of structures across layers. For numerical ma-
trices containing generic numbers, e.g., node degrees, other methods are more
appropriate, as described in the following two sections.

Binary properties

When a structure can be present or not on different layers, a basic way to
compute the similarity between layers is to quantify the overlapping of these
structures, that is, how often the same structure appears or not on more than
one layer. This is typically the case when the observation function defining the
property matrix checks the existence of the structure.

Measures of overlapping have been defined and redefined many times during
the last few years in different papers, but most definitions can be generalized
using property matrices as:

Cpi, Pl 2

where C' is some normalization function. Most (but not all) measures in the
literature compare edges across layers, this being the result of the traditional
edge-based definitions of multiplex networks such as adjacency matrices. In our
definition, the usage of property matrices allows us to apply similar comparisons
to various other properties.

Consider two binary property vectors p;, and p;,. Let us denote with:

-a= pgl - pi, the number of properties that {; and l» share;

- b=p;, - (1 — p1,) the number of properties that /; has and Iy lacks;

- ¢=(1—-py) - pi, the number of properties that I lacks and Iy has;

- d=(1-py,) - (1 —py,) the number of properties that both {1 and I5 lacks;

-m=a+b+c+d=length(pi,) = length(pi,)

29

Table 4: Similarity functions for binary property matrices. Column C' indicates
the normalization function in Eq. 2. For the two functions also considering
the non-existence of structures on both layers, we only provide the standard
definition not based on the product of property vectors

Name Normalization function C' Standard notation
Russel-Rao m -

Jaccard length(le)—(11—1711)"(1—1')12) med

Coverage m

Kulczynski % ||p111 T W) %(%ﬂy + a%rf)
Simple matching coeff. (SMC) NA %d

Hamann NA %(HC)

Then, the binary similarity functions can be summarized as in Table 4.
Numerical properties Depending on the reason why we are computing the
similarity between layers, we can use different approaches. As each layer is
represented as a vector in a property matrix, one way is to compute vectorial
distances such as Euclidean distance or cosine similarity. Another popular way
to compare numerical layer property vectors is to compute correlations. An
example of this is the so-called inter-layer correlation measure, which is just
the Pearson coefficient computed on two node degree property vectors [10, 91].
It is interesting to notice that in the literature correlations across layers have
been almost always computed on node degrees, and in [8] also on clustering
coefficients. However, correlations can be in fact be computed on any property
matrix.

In addition, we would like to stress that Pearson correlation here is used
as measure of accordance of numerical vectors, and then it can be used also
when usual statistical assumptions are not completely fulfilled. However, in
case of highly skewed distributions, or in case of severe and numerous outliers,
the Spearman rank correlation is a good solution. For this reason, we suggest
to use them jointly.

Finally, when computing correlations in generalized multiplex networks a
choice must be made on how to handle actors not present in all layers. The
choice we adopted in our experiments was to discard pairs where at least one
of the two values was missing, which is a typical option in statistical software
packages.

3.3.2 Guidelines

From our literature study, theoretical framing and from the experiments we
reported in [18] it appears how layer comparison measures can be very valuable
and often succeed in practice to characterize the structure of multiplex networks,
but they are not always straightforward to use. Therefore, in this section, we
list a set of guidelines on how to use these measures.

30

Table 5: Similarity functions for numerical property matrices. The function p(-)
provides the ranks of the values in the property vectors

Name Function

Py, 'Piy
(YRR
[pi; —mean(pyy)]’-[p1, —mean(pi,)]
Ilpi, —mean(pi)]l-[[Piy —mean(pi,y)]l
[p(p1,) —mean(p(piy))] - [p(P1y) —mean(p(pi,))]

Cosine Similarity

Person Correlation Coefficient

Spearman Correlation Coefficient

Ile(pry) —mean(p(Piy DII-llp(Piy) —mean(p(piy))]I

One important aspect to consider when choosing which function to use is
the distribution of values in the property matrix. Among the criteria that can
be used to characterize layer property vectors and comparison functions, the
following appear to be useful:

e Sparsity: A layer property vector is sparse if the number of 0s is much
higher than the number of non-0 values.

e Degeneracy: A layer property vector degenerates if its values are (almost)
constant. Sparsity is a special case of degeneracy.

e Linearity: A layer property vector is linear if the values in the vector and
their rank are linearly correlated.

e Scale invariance: a similarity function is scale invariant if it does not (sig-
nificantly) change when one or more layer property vectors are multiplied
by a constant.

We now list our guidelines, divided into four main areas.

Number of measures The number of available measures is very large, con-
sidering that the fifty options used in our experiments are only some of the
measures we can obtain using different combinations of property matrices and
observation functions. While the choice of the measures to be used for a specific
empirical network is of course influenced by what the analyst is interested in,
e.g., degree-based similarity, betweenness-based, or specific motifs that are mo-
tivated by the application context, our experiments show that different measures
highlight different types of similarities.

At the same time, even during exploratory analyses where it is often useful
to compute several measures to get a good overview of the data, it can be
practically preferable to identify a small number of measures. This can be due
to time constraints, if the data is large, but also to the need of producing results
that are easy to interpret and present. The choice of which measures to use can
be simplified using the correlation plots in [18]. Groups of measures producing
highly correlated values can be identified, and one measure for each group can be
chosen. In particular, JS, KL and D divergences are similar, and JS divergence
can be used from this group. Jaccard, coverage and Kulczynski are similar, and

31

Jaccard or coverage can be used — with the latter highlighting how the non-
overlapping structures are distributed across the two layers, e.g., if one layer is
containing the other.

When comparing layers by comparing a single value, particular attention
should be paid to the so called discriminative power or uniqueness of the mea-
sure, i.e., the capability of a measure of taking different values on non-isomorphic
networks. For example, while mean is not a representative measure for non-
regular distributions, it can still be used to compare two distributions, such as
degree distributions. But not alone, because the same degree does not imply
the same topology.

While min can be useful in general to characterize a distribution if used
together with other statistical summaries, it does not appear to be very useful
to compare layers where there is typically at least one node having value 0. For
example, min degree is 0 for all layers for most networks. On the contrary, max
can be useful, e.g., to include the size of the layers in the comparison.
Node-alignment The choice of whether a node-aligned or generalized multi-
plex model should be used is often clear from the context. For example, we
would typically not align nodes when layers represent different social network
sites, to represent the fact that users may not have accounts on some sites,
while we would typically align nodes in a multirelational network about people
interacting in multiple ways, where not having edges on a layer does not imply
that the person cannot interact in that specific way.

However, the choice may have a significant influence on the results of the
analysis. Node-alignment may lead to some degeneracy. As expected, node-
existence measures become useless, but also other cases are affected, such as
measures 11-16 (degree) and 27-32 (clustering coefficient).

Measures based on node existence may also help us interpreting the results of
other measures. So, before using link-based measures (such as edge Jaccard) it
is important to check node overlapping to understand whether comparing higher
order structures is meaningful, or whether the results will just be a consequence
of the limited amount of node overlapping across layers.

Rank correlation can suffer from node alignment because of false tie resolu-
tion, and also Pearson correlation results may become less evident, with positive
and/or negative correlations being lost or decreased depending on the type of
networks.

Sparsity SMC and Hamann are only useful for non-sparse, non-degenerated
cases, typically corresponding to node existence on generalized networks. Russel-
Rao also suffers if property vectors are sparse. As an example, these measures
do not work well for triangle-existence property matrices in general.
Linearity Having non-linear distributions of values in the property vectors, as
it is the case for degree property matrices, is not problematic when comput-
ing linear correlation. Linear correlation (Pearson) is often preferable to rank
correlation, which can be problematic in case of generalized networks (because
of null values) and also for node-aligned networks (because of the many nodes
with the same values).

32

3.3.3 Other practical considerations

Our framework captures several measures appeared in the literature: node ac-
tivity overlapping [91], global overlapping of edges [13] and absolute binary
multiplexity [46] are applications of the Russel-Rao function to node and edge
existence property vectors, average edge overlap [31] and [8] are respectively the
Jaccard and coverage functions applied to edge existence. A general recommen-
dation is to use the original names, as we do in this report: all the measures
used in this work and mentioned in this paragraph are applications of existing
proximity measures, most of them well known to data analysts. Calling them
by their name, such as edge Jaccard, makes it simpler to understand when it is
reasonable to apply them if we already know the original measure.

Also, notice that our framework allows the definition of a large number of
other functions not mentioned here, also considering directed/undirected net-
works, weights, and other meso-structures such as motifs. Other network sum-
mary functions that are not specific for multiplex networks can also be obtained
as combinations of property matrices and observational functions. Examples are
order (node existence + sum), size (edge existence 4+ sum), density (edge exis-
tence + mean), average path length (dyad distance + mean), etc. We believe
that splitting the problem of computing layer similarities into the two problems
of (1) deciding what to observe and (2) deciding how to compare these observa-
tions using existing generic comparison functions gives the analyst the ability to
easily generate custom layer comparisons that are appropriate for the problem
at hand.

3.4 Data visualization

Sociograms, that is, visual representations of the relationships between indi-
viduals, have been used since the origins of social network analysis, a notable
example being Moreno’s seminal work introducing this concept [87]. In the
same book we also find a sociogram representing a multiplex network, where
multiple types of relationships between the same group of individuals coexist.
However, while several layout algorithms for simple graphs have been developed
since then, developments in visualization methods for multiplex networks have
been limited.

One natural way to visualize a multiplex network is to treat it as an edge-
typed multi-graph using different colors and line styles to distinguish between
the different edge types, and as done by Moreno himself. However, this op-
tion can quickly lead to a very dense representation hiding relevant network
structures even for very small networks [106]. Alternatively, different types of
connections can be sliced into different layers, with the same node replicated
on multiple layers. This approach has been used in the literature to represent
social/historical [95, 83] networks, but also several other types of multiplex net-
works, from traffic [74, 30] to biological [30] and financial networks, sometimes
visualized in a 2.5-dimensional space.

However, replicating the same node on multiple layers introduces a new

33

. s
inter-layer force — ; \\ A
Layer 1 g : :
Layer 2 A, \
1 — — 2) o
intra-layer force N //

4

Figure 16: The effect of intra-layer and inter-layer forces on node positions

question: how should the positions of multiple occurrences of the same node
relate to each other? Two main approaches for visualizing multiplex networks
sliced into layers have been used: visualizing each layer independently of the
others, or keeping the same layout in all layers, so that all occurrences of the
same node will result aligned on a straight line if the layers are visualized one
besides the other.

Using the first approach we can appreciate the structure of each layer. Using
the second approach it is easier to find the same nodes across different layers,
but this does not necessarily help in understanding relationships between whole
layers, and can also be misleading.

In this section we present a simple algorithm that can replicate the ap-
proaches listed in the previous paragraph and can also produce new intermedi-
ate layouts between the ones mentioned above, following the principles explored
in the context of dynamic graph drawing [17]. We call the general layout and
algorithm described in this section multiforce.

Multiforce is based on a force-directed algorithm (in this section and in the
software library used to produce the analyses included in this deliverable we
extend the popular Fruchterman-Reingold method) and uses two main types
of forces: intra-layer and inter-layer, that can be tuned to impact specific lay-
ers more or less than others. Intra-layer forces attract neighbors inside the
same layer, making them closer, as in traditional layouts for monoplex net-
works. Inter-layer forces try to align instances of the same node on different
layers®. Figure 16 gives an intuition of how these forces operate. In addition,
we use repulsive forces as in the original algorithm, and also gravity for the cases
where no inter-layer forces are active and the network contains more than one
component.

3.4.1 The multiforce layout

Multiforce belongs to the slicing class of multiplex layouts, and is different from
existing approaches, because it allows a balancing of the effects of intra-layer

3In theory inter-layer forces can also be used to visualize more general networks, where
edges can cross layers, but here we focus on multiplex networks.

34

and inter-layer relationships. Multiforce extends the Fruchterman-Reingold al-
gorithm [44]. This is one of the most popular options available in graph analysis
software packages, although it is not a state-of-the-art method; several varia-
tions of this approach have been developed, but its simplicity allows us to focus
on the simple variation of the way in which forces are defined, which can then be
adapted to more complex algorithms. As mentioned in the introduction, multi-
force is based on two types of attractive forces. The nodes are positioned on a
set of planes, one for each layer or type of relationship — this setting is sometimes
called 2.5-dimensional, because it looks 3-dimensional but the z-coordinates of
the nodes are fixed and limited to the number of planes/layers. In this report
we visualize all layers on the same plane, because a 3-dimensional graph is vi-
sually intriguing but not easy to understand without the option of interactively
rotating the diagram. Intra-layer forces, that can be weighted differently in each
layer, attract pairs of nodes connected on the same layer. Inter-layer forces in-
fluence the position of nodes in different layers connected by inter-layer edges,
or corresponding to the same node in the case of multiplex networks.

The same idea behind multiforce was already proposed and tested in the
context of dynamic graphs, where layers are not unordered as in the case of
multiplex networks but are organized in a sequence.

The pseudo-code of multiforce is presented in Algorithm 1, and the algorithm
is implemented in our software library. The algorithm takes a multiplex network
G = (N, L,V,E) as input, where N is a set of nodes, L is a set of layers, (V, E)
is a graph and the elements of V' are pairs (node, layer). We notate v.layer the
layer of an element v € V' and v.node the node corresponding to an element
veV.

Lines 13-29 are the same as in the original algorithm, and compute the dis-
placement of each node based on its neighbors (attractive forces) and other
nodes (repulsive forces), with the addition of weights that can be used to spec-
ify on which layers the layout should be computed according to the original
algorithm (27-28). Lines 30-37 extend the original algorithm and compute the
displacement caused by the position of the node on other layers, to control node
alignment. This is also weighted, to allow the user to turn this feature on and
off for all or some layers (34-35). In our tests the function cool (45) reduces ¢
linearly, so that it becomes 0 at the last iteration.

Some details of our algorithm can also be changed without affecting its
underlying idea. First, we can modify lines 6-12 to assign the same initial
random coordinates to the same node across different layers, anticipating line 8
before the for loop. A weighting factor INLA[v] can also be added at line 20,
so that both attractive and repulsive forces are reduced or reinforced together.
Finally, lines 41 and 42 have been retained from the original algorithm and
ensure that the nodes do not exit the frame specified by the user, but are not
necessary if the final coordinates are re-scaled to fit it or a gravity force is added
to control the spreading of the nodes so that all slices retain similar extreme
coordinates.

35

Algorithm 1 Multiforce

Require: G = (N, L,V, E): a multiplex network
Require: W: width of the frame

Require: L: length of the frame

Require: #iterations

Require: INLA, INTERLA: intra- and inter-layer weights

1: f, = function(z, k){ return k%/z; }
2: f, = function(z, k){ return 22/k; }
3: area: =W -L

T
4: k= a\l\?la;
5 t:=+/|NJ;
6: for (ne€ N) do
7. for (v eV st.v.node =n) do
8: (z,y) = random coordinates;
o: pos[v] = (z,y)
10: z[v] := index(v.]ayer);
11: end for
12: end for

13: for (i =1 to #iterations) do
14: // calculate repulsive forces
15: for (veV)do

16: disp[v] := 0;

17: for (ueV)do

18: if (u# v and u.layer = v.layer) then

19: A := pos[v] — posu];

2 disp[e] := displo] + (/] A1) * £ol] 5)
21: end if

22: end for

23: end for

24: // calculate attractive forces inside each layer

25: for ((u,v) € F) do

26: A = pos[v] — pos[ul;

27: disp[v] := disp[v] — (A/| &) * fa(] |, k) * INLAv];
28: disp[u] := disp[u] + (A/| A]) * fo(] & |, k) * INLA[u];
20: end for

30: // calculate attractive forces across layers

31: for (n€ N) do

32: for ({u,v} with u,v € V, u.node = v.node = n) do

33: A := pos[v] — posu];

34: disp[v] := disp[v] = (A/| A|) * fa(| A, k) x INTERLA[v, ul;
35: disp[u] := disp[u] + (A/| A) * fo(] A |, k) * INTERLA[u, v];
36: end for

37 end for
38: // assign new positions
39: for (veV)do

40: pos[v] := pos[v] + (disp[v]/|disp[v]|) * min(disp[v], t);
41: pos[v].x := min(W/2, max(—W/2, pos[v].x));
42: pos[v].y := min(L/2, max(—L/2, pos[v].y));

43: end for

44: // reduce the temperature
45: t:= cool(t);

46: end for

3.4.2 Main algorithmic settings

The multiforce algorithm can produce both existing and new layouts using the
following settings:

1. Multi-graph: this layout, where each node has a specific position that
does not depend on the layer and all edge types are considered when
computing the node coordinates, is obtained by setting the same positive
value for intra-layer weight in each layer and infinite (or, in practice, very
high) inter-layer weights. The intra-layer weights will then keep nodes
aligned across layers, and intra-layer forces will produce the layout by
moving these "node pillars” around.

2. Sliced, independent: this layout corresponds to the application of the
force-based algorithm on each layer, and is obtained by using positive
intra-layer weights and setting inter-layer weights to 0.

3. Sliced, aligned on layer x: this layout is computed based on one of the
layers, and nodes are kept aligned on the other layers. It is obtained by
specifying a positive intra-layer weight for layer x and setting the other
intra-layer weights and the inter-layer weights to 0.

4. Balanced: this intermediate layout is obtained by setting a positive
weight (for example, 1) for all inter- and intra-layer forces.

In [41] we provide a comparison between multiforce and a traditional non-
multiplex force-based layout algorithm, in addition to a qualitative characteri-
zation of the diagrams produced by our algorithm.

37

4 MeetUp data analysis

MeetUp? is an online service used to organize groups that host in-person events
for people with similar interests. Most of the events organized by these groups
are periodical and they have a stable core set of participants that form a commu-
nity of practice focused on one or several activities. Some examples of events or-
ganized by IoT MeetUp groups include contact meetings with investors to learn
about new business models, hackathons for playing with the latest technologies
or introductory workshops aimed for new members. In the social platform, the
specific interests of the groups, their organizers and the participants attending
the events are expressed using a set of keywords.

In this section we analyze the composition of the MeetUp groups to identify
what elements (things, processes or domains) constitute, for each of these types
of actors (groups, organizers and members) the IoT space (see Section 1 for a
description of our theoretical framework). Using the public MeetUp search API
we have identified 195 European groups that have included “IoT” or “Internet of
Things” in their name. Then, for each of these groups we have collected detailed
information about (1) the group and its purpose, (2) the events the group has
organized since its creation, (3) the keyword preferences and geographic location
of both, the organizer and all the participants who manifested an interest in
attending at least one of the meetings. Figure 17 shows the relation between
the different data entities stored for analysis.

Please notice that the data schema shows all the information available through
the MeetUp API, but all personal information has been anonymized. In par-
ticular, all the unique identifiers (id) have been randomly reassigned and the
name field in the Members table has been deleted.

Table 6: Summary of the collected data. The number of organizers and
groups do not match because for some of the listed groups there is no official
organizer according to the public API.

Entity Observations
Groups 195
Events 2,386

Organizers 170
Participants 32,971
RSVPS 71,301
Keywords 8,685

Our data contains information about 195 IoT MeetUp groups that were
active in October 2018, and the 2,386 events they have organized or have planned
to organize until October 2020. Appendix C contains a detailed list of the
collected groups and a summary of their activity over time. As we can observe,
the activity of the groups, measured as the number of events per month, is very
heterogeneous in our dataset. Larger groups have regular meetings, usually

4https://www.MeetUp.com/

38

] Group v

id INT

] Keyword v

name VARCHAR(45)

] Group_has_Keyword ¥ id INT
category INT

! Group_id INT name VARCHAR(45)
city VARCHAR(45)

¥ Keyword_id INT total_groups INT
country VARCHAR(2) ed — -groups

> total_members VARCHAR(45)
created_date DATETIME
4 IS
lat DOUBLE ,
organizer
lon DOUBLE
link VARCHAR(45)
members INT j Member v
organizer INT Tid INT
status VARCHAR(45) name VARCHAR(45)
] Member_has_Keyword ¥
> id country VARCHAR(2)

¥ Member_id INT
E city VARCHAR(45)
id ¥ Keyword_id INT
lat VARCHAR{45)
lon VARCHAR(45)

v

PRIMARY
group_id
"] Event v
Tia INT
name VARCHAR(45)
group_id INT
_IRSVPs ¥
event_url VARCHAR(45)
¥ Member_id INT
attendance INT
H 1< ¥ Event_id INT
possible_attendance INT
id INT
status VARCHAR(45) >
pub_date DATETIME
update_date DATETIME
event_date DATETIME

>

Figure 17: MeetUp data schema.

once per month, that are announced in time; while smaller groups meet more
sporadically. Table 6 summarizes the number of instances collected for each
entity.

The events’ participants have been extracted from the positive RSVPs no-
tified to the MeetUp service, and hence might not reflect the actual number of
participants attending an event because members do not necessarily physically
go a meeting after the RSVP and because most of the events accept members
who have not previously registered as attendees. The organizers of the events
can, afterwards, notify the platform about the total number of real participants
but, in practice, organizers do not use this feature of the service. For the pur-
poses of our analysis we will assume that all the data collected is static and

39

accurate.

4.1 Basic statistics

As we know from the interviews performed during the field work, IoT activities
in Europe have been unevenly distributed across countries, with Germany, UK
and France being the most active, followed by Spain, Belgium, Netherlands and
others. Figure 18 shows the amount of activity we have observed in our data by
country and entity — groups, organizers and participants. It is not surprising
that there are no significant differences between the three rankings. MeetUp
communities are, unlike other participatory forums, local entities organized and
supported off-line by members from the same country, even the same city in
most of the cases. In 93% of the cases the nationality of the organizer matches
the country where the events of his/her group take place.

Overall, only 53% of the countries in Europe (27 / 51) have active groups
with a name explicitly mentioning "IoT” or "Internet of Things”, with a higher
concentration of them in the central/western countries.

Figure 20 shows the overall number of IoT events the groups have organized
over time, including some of the events they plan to have in the future. We
can observe that the communities have a seasonal pattern, with periods of high
activity concentrated just before summer and very few events in August concur-
ring with the holiday season in most countries. According to the collected data,
the amount of IoT-related events has increased during the past years, reaching
a maximum of 78 events on May 2017 (indicated in Figure 20 with a vertical
dashed line).

As we can observe in Figure 21, interest in IoT field has evolved differently
across Europe. While in UK and Germany the number of events has grown
every year since the creation of the social platform, in Spain the number of
events has been small until recently. The first events in Netherlands and France
happened later, in 2014 and 2015 respectively.

40

GB-
DE-
FR-
NL -
ES-
AT-
PL-
CH-
SE-
HU-

country

SK-
RO-
GR-
Fl-
DK -
UA-
RS-

HR-
cz-
BG-

m

°
=)
[
S
w
S

o
o
n
=]

>
@
S
»
=)

(a) Groups

n

(b) Organizers

Figure 18: Data distribution by country. Part L.

o
m

country
172]
[0}

0 2500 5000 7500 1000
n

(a) Members

Figure 19: Data distribution by country. Part II. Countries with less than
2 members have been omitted.

2012 2014 2016 2018 2020
date

Figure 20: Overall number of events over time. Number of events organized
by the IoT MeetUp groups over time. The dashed (red) vertical line indicates
the maximum peak, corresponding to May 2017.

42

2012 2014 2016 2018 2020
date

Figure 21: Overall number of events over time.

4.2 Topic analysis

Apart from the distribution of popularity of IoT events in Europe, one of our
main objectives in this project is to identify current and past matters of concern
defining IoT. To use a uniform terminology across the data sources used in this
project, here we call these matters of concern topics.

Figure 23 shows the number of times each of the 8,685 keywords we collected
was used to define the purpose of a MeetUp group (Figure 23a) or mentioned in
the profile of one of the organizers (Figure 22a). We can observe that some of
the keywords the organizers used to define the purpose of their groups, were also
used to define their own interests, but many of them differ. For example, there
are only 4 keywords in common in the top 10 interests on each list: “Internet of
Things”, “New Technology”, “Software Development”, and “Open Source”. The
relative frequency of the use of these keywords is also different (e.g., Internet of
Things is the top keyword used to define a group, while is the 7th to describe
an organizer).

43

TheThingsNetwork
Moblle Development
Knowledge Sharing
IoTAAS: loT As A Service
Machine Learning
Internet Professlonals
Hardware Engineering
Open Source Hardware
Data Analytics
Technology

Smart City

LoRaWAN

Internet Startups

loT Security

Industrial Internet of Things
Connected Objects

DIY (Do It Yourself)
Robotics

Smart Citles

Innovation

Hardware
Microcontrollers
Hacking

Embedded Systems
Startup Businesses
Raspberry Pl

Cloud Computing
Entrepreneurship
Education & Technology
Moblle Technology

10T Industrial Internet of Things
Computer programming
Machine-to-Machine
Technology Startups
Electronics

Blg Data

Ardulno

Web Technology
Wearable Technologles
M2M Devices

Makers

Open Source

Software Development
Sensors

Smart Home

M2M

Smart Sensors

10T hacking

New Technology
Internet of Things

Keywords

]

[=
o

200
150
50

Kouanbaig
(a) Group

Figure 22: Top-50 keywords. Top-50 keywords used for organizers to define
the interest of the MeetUp group they manage.

Travel

DIY (Do It Yourself)

Data Visualization
Creativity

Smart Home

Professlonal Networking
Leadership

Java

Games

Arduino

User Experlence

Muslc

Makerspaces

HTML5

Busliness Intelligence
Aglle Project Management
Outdoors

Online Marketing

M2M Devices

JavaScript

Art

Web Design

NoSQL

Smart Sensors »
Makers g
Machine Learning 2,
Education & Technology Q
M2M

IOT hacking

Entrepreneur Networking
Professlonal Development
Data Analytics

Internet Startups

Business Strategy

Web Development

Lean Startup

Cloud Computing

Moblle Development

Web Technology
Innovation

Mobile Technology
Technology

Computer programming
Entrepreneurship

Internet of Things
Software Development
Blg Data

Technology Startups
Open Source

Startup Businesses

New Technology
o wn (= wn o
o ~ wn o~
Kouanbaig

(a) Organizer

Figure 23: Top-50 keywords. Top-50 keywords used for organizers to define
their own interests.

In particular, we observed that when organizers must define their own in-
terests, they choose to use a large number of keywords directly related with
business (e.g., “Startup Business”, “Technology Startups” and “Entrepreneur-
ship” appear in the top-10) in combination with keywords defining domains
and practices. Instead, when organizers choose the keywords to define the IoT
groups they manage, they use less business related-keywords (e.g., “Technol-
ogy Startups” is the first one, and appears in 17th position), and a balanced
combination of things, domains and practices.

There can be many reasons for this difference of criteria, from a marketing
strategy to an unconscious bias. The quantitative data we collected is not
sufficient to find a reasonable answer, so we plan to further investigate this
phenomenon during the following months.

A detailed observation of the keyword distribution among the 5 most active
countries (see Figure 25) reveals that while communities from different geo-
graphic locations have a higher agreement on what elements represent the IoT
field, the organizers of those groups have a large disagreement. In particular,
many of the business keywords that we just identified, are very prominent in
the two countries with larger number of events (UK and Germany) but they are
relegated to a secondary role in the other countries we have examined.

46

o
m

ES FR GB NL

Internet Professionals
Industrial Internet of Things
Knowledge Sharing
TheThingsNetwork
Moblle Development
Machine Learning

DIY (Do It Yourself)

Data Analytics

IoTAAS: loT As A Service
Internet Startups
LoRaWAN

loT Security

Startup Businesses
Hardware Engineering
Microcontrollers
Technology

Robotics

IOT Industnal Internet of Things
Innovation

Computer programming
Hardware

Education & Technology
Machine-to-Machine
Open Source Hardware
Moblle Technology
Smart City

Raspberry PI
Connected Objects
Smart Citles

Electronics

Web Technology

M2M Devices

Ardulno

Hacking

Embedded Systems
Entrepreneurship
Cloud Computing
Wearable Technologles
Open Source

Makers

Technology Startups
Big Data

Software Development
Smart Home

Sensors

M2M

IOT hacking

Smart Sensors

New Technology
Internet of Things

0

4
30
20
10
0
40
30
20
10
0
20
10
0
40
30
20
10
0
40
30
20
10
0

40
g
5 30
|
g
C

(a) Group

Figure 24: Top-50 keywords per country. Top-50 keywords used for orga-
nizers to define the interest of the MeetUp group they manage filtered by the 5
countries with most groups.

Keywords

NL

-n
@
@
2]

DE ES

Leadership
Creativity
Aglle Project Management
Java

User Experlence

Smart Sensors

Smart Home

Data Visualization
Travel

NoSQL

JavaScript

Outdoors

Music

Business Intelligence
HTML5S

Education & Technology
DIY (Do It Yourself)

Art

Ardulno

Professlonal Development
Professlonal Networking
Online Marketing

M2M Devices

Web Development

Data Analytics

Web Design
Makerspaces

Machine Learning

10T hacking

Games

Web Technology
Makers

M2M

Cloud Computing

Lean Startup

Internet Startups
Entrepreneur Networking
Business Strategy
Moblle Development
Innovation

Technology

Moblle Technology
Computer programming
Software Development
Internet of Things
Entrepreneurship
Open Source

Blg Data

Technology Startups
Startup Businesses
New Technology

Emliloeen _ al B _E-
1
q ([[[1]]]
II.I..I..- meennllilisll_ B . _ EaEEa——
| T[] [P TS | emi——

15
10
5
0
15
10
5
o
25
5
0
5
0
25
0
5
0
5
0
25
20
15
10
5
0

25
20
25
20

&ee
fouanbai4
(a) Organizer

Figure 25: Top-50 keywords per country. Top-50 keywords used for orga-
nizers to define their own interests filtered by the 5 countries with most groups.

Keywords

Differences also arise between the most active countries. For example, com-
pared with the organizers in Germany, their counterpart in UK and France have
a larger vocabulary of keywords to define their MeetUp groups, which they use
unevenly (e.g., some of the terms are only used by a very small fraction of the
organizers).

49

5 Twitter data analysis

Twitter data is significantly different from the data that can be extracted from
MeetUp. On the one hand, on Twitter we can observe finer-grained social
interactions. MeetUp only allows us to know if two users have expressed an
interest in the same event, which does not tell us whether they know each other
or have interacted in any way. On Twitter, we can see if a user has mentioned
another specific user, and we have also access to the text they exchanged. On
the other hand, information on Twitter is more unstructured: we can think of
hashtags as something playing a similar role as Meet Up events when we perform
our analyses (that is, filtering users interested in the event or topic associated to
the hashtag), but hashtags are not created through some centralized decision-
making process as in the case of MeetUp organizers. This can lead to different
hashtags referring to the same topic, single hashtags used to refer to different
topics in different tweets, as well as many tweets not explicitly mentioning any
hashtag. In addition, on Twitter there is no clear counterpart of the tagging
happening on MeetUp, where both users and groups are self-annotated with
precise keywords. Therefore, Twitter data can be more challenging to identify
matters of concern, but can also highlight more informal conversations.

Ideally, we would like to use Twitter data to perform various types of anal-
ysis: what is discussed in IoT-related tweets, where are the different topics
appearing, when are they discussed (for example, when they emerge for the
first time and when they reach a peak of popularity), who is leading the dis-
cussion on specific topics, and finally a joint analysis putting all these aspects
together to map online conversations. As we discuss in the next sections, some
of these analyses are indeed possible given some assumptions and limitations,
some are not, and to extract more knowledge from the data we required frequent
interactions with the qualitative units — a methodology known as triangulation,
and further discussed in the following.

5.1 The #IoT dataset

Using our Twitter data collection tool we have been retrieving tweets containing
the #IoT hashtag since March 2017. The initial objective of this retrieval, that
has happened in parallel with the collection of event-specific tweets (for example,
in occasion of IoT conferences), was to perform the analyses mentioned above.

However, the analysis of this large dataset containing millions of tweets has
highlighted some limitations.

The first problems we had to face concerned the spatial analysis of the tweets.
First, we have no guarantee that the geographical distribution of the collected
tweets is a good indicator of the number of tweets with the #IoT hashtag
produced in different locations. This is due to uncertainty about the sampling
algorithm used by Twitter and about the adoption of geo-localized tweets in
different regions. Another problem concerns the decision of how to normalize
statistics from the data: in one area there can be only a few very active users,
in other areas a lot of less active ones. Whether one should normalize with

50

respect to the number of users or the number of tweets or the local population
or the local population active on Twitter or some combination of these values
is unclear. Finally, the Twitter API does not allow to filter both by hashtag
and by location. As the large majority of collected tweets is not geo-localized, it
becomes almost impossible to provide a zoomed-in analysis of Europe without
including tweets from other locations.

A second type of problems regards the noise in the data, that is, the presence
of irrelevant tweets. An example is the inclusion of tweets automatically pro-
duced by traffic cameras in Brazil. While these are clearly IoT devices, justifying
their usage of the #IoT hashtag, on top of not being in Europe these tweets are
not relevant in the identification of online discussions between important actors
and inside IoT communities of practice. The removal of these tweets required
intensive manual work, leading to a list of other hashtags identifying these cases
and allowing us to automatically filter out the corresponding data. Examples
of these filtering hashtags are #florianopolis, #joinville and #blumenau.

The previous issue also highlights an additional question: which users should
be considered in the analysis? If the answer is clear about traffic cameras, it
is less clear whether other types of bots® should be included or not. At this
time the application of bot detection methods has not produced results that are
accurate enough to be included in this report.

Another challenge to be able to perform the aforementioned analyses is the
identification of topics. Our experiments with automated topic detection meth-
ods [14] confirmed that the special language and the short texts in Twitter do
not allow an accurate topic extraction. Grouping tweets into larger texts did
not help either. This, in addition to other challenges in the state of the art on
automated topic detection (such as the selection of the number of topics to be
retrieved and the presence of non-deterministic results) forced us to rely once
more on manual pre-processing, where the qualitative team checked the list of
most common hashtags and defined a set of rules to automate their normaliza-
tion. For example, transforming #industrialiot into #iiot, and #virtualreality
into #vr, so that the same hashtag would be consistently used to refer to the
same topic. This led to the identification of the main discussion topics associated
to the #IoT hashtag in the last two years, indicated in Table 7.

After this data pre-processing and considering these assumptions, we could
finally try to apply our analysis methods for temporal text networks to the
resulting data.

5.2 Conversational analysis

In this section, we apply some of the models and approaches introduced in Sec-
tions 2 and 3 to a subset of the the #IoT Twitter data, to test their effectiveness.
In particular, we focus on using the discretization approach introduced in Sec-
tion 3.2.2 to analyze the formation and evolution of communities of actors and
messages.

5 Al-based computer programs simulating users

51

#£iiot ##fintech F##finance
#blockchain F£cryptocurrency | #gdpr
#security #itsecurity #cybersecurity
#datasecurity Ffiotsecurity #infosec

#vr ffar #analytics
#predictiveanalytics | #dataanalytics #ai
#machinelearning #deeplearning F#artificial
#hardware #datamining #arduino
#3dprinting #raspberrypi #smartdevices
#£sensors #wearables #devices
#smartbuildings #smartcity #smart
#smartdevices #smartcontract | #smartgrid
#smarthomes #smartmobility | #smartphone
#smarttechnology

Table 7: Main IoT topics in the large #IoT dataset identified through manual
analysis

Dataset The dataset used for this experiment consists of the 247,399 tweets
collected in June, 2017. The dataset contains mentions (tweets including Quser-
name), retweets (tweets starting with RT Qusername), other tweets that are
neither mentions nor retweets, and the 51,369 users involved in the aforemen-
tioned communications. In the following experiments we focus on the network
obtained starting from the tweets containing mentions (about 5% of the initial
tweets), built by coding each tweet as in Figure 8.

Table 8: Temporal text networks used in the case study and its basic prop-
erties: number of actors (JA]), number of messages (|M|), number of edges (|E|)
and number of layers (|L|).

Networks Type |A] | M| |E| |L|
Original bipartite 15,717 13,210 35,015 2

discretized k-partite 15,717 17,273 44,943 182
Projected multilayer 15,717 - 23,766 182

The resulting temporal text network contains about one third of the users
in the initial dataset (15,717) and the 13,210 messages exchanged between them
(See Table 8). We call this the original network, and use it as a the starting
point for both the following experiments.

Discrete analysis Social interactions within a group of participants can form
a community if they occur more frequently within the group than with other
members of the network. In temporal text networks, those interactions are the
result of the exchange of messages between actors. In this example we show how
our model can be used to find communities of actors discussing about the same
topics during the same weeks. Following the method described in Section 3.2.2
we first transform our network to a multilayer network preserving information

52

about interactions between users, topics and time, so that we can then apply
an existing clustering algorithm.

The discretized k-partite network is built following the procedure explained
in Section 3.2.2. In this particular example, we first split the original layer of
messages using their hashtags as an indication of the topic, then we further dis-
cretize based on the week when messages are posted. The second discretization
uses the posting time to create hashtag-week-specific layers.

Finally, we build the multilayer network by projecting each one of the layers
containing messages into the actors’ layer. Two actors in this network are con-
nected in a given layer L = (h,w) if at least one of them has sent a message to
the other using the hashtag h during the week w. If multiple messages have been
exchanged between two actors in the same layer, only a single edge is generated
during the projection. At this step all edges are undirected and unweighted
to fit the community detection algorithm we used. Table 8 describes the main
properties of the original temporal text network, the projected k-partite and the
final multilayer network used during the analysis.

Using the multilayer network and the clique percolation algorithm, we pro-
ceed to detect communities of actors across the whole network.

Figure 5 shows the communities with more than 3 actors formed in the
multilayer network. Communities contain users and topics, and both users and
topics can overlap across communities. The number of users is indicated by the
size of the community, while the layers representing the topics of interest of the
actors are annotated next to each community. The smallest community in the
diagram has 4 actors in the same layer, while the largest community contains
27 different actors and 3 layers. The edges between communities in different
weeks indicate that at least one third of the users in the second community
were also present in its predecessor. The thicker the line, the more users are
shared between them.

We can observe that some of the hashtags, in particular artificial intelligence
(#ai), augmented reality (#ar) and virtual reality (#ai), are very popular in the
IoT discussion space, with several groups of interest of different sizes forming
around one or more of them. However, while the three topics are present across
the whole month, the communities they form are very volatile. Only one of the
smallest community with just 4 actors, for example, is preserved in time with-
out changing its members or the topics they discuss. The largest communities
formed during the first week, instead, disappear in week 2. Later on, some of the
same users form new communities but with less members and a higher variance
of topics. Less frequent hashtags such as #machinelearning, #security, #sen-
sors, #smartcity and #blockchain also form groups of interest, usually smaller
and with no or a few connections with the groups of users discussing the most
common topics.

Overall these results highlighted some additional challenges in the study
of online communities through large Twitter datasets. The identified conversa-
tional communities showed a very fragmented IoT space. None of the found com-
munities was big enough to become the main arena to develop a long-standing
conversation on a specific topic.

53

iiot.
iiot
ot

ot

w1 w2 w3 w4

Figure 26: Evolution of communities in the IoT space. The size of the
communities is indicated by the size of the nodes — representing the number of
actors — and the annotated hashtags. The thickness of the edges between two
communities indicates the number of common actors between them.

Our explanation of these results is the sparsity of Twitter conversations.
While it is true, as mentioned at the beginning of this section, that on Twitter
we have the possibility of observing dyadic interactions (a user mentioning a
specific other user), the platform itself does not promote the stability of this
type of interactions in time, and there are other ways of participating to the
same conversation without explicitly marking this in a way that is recognized
in the API and thus directly searchable. To address this additional challenge,
we started developing new methods to identify user interactions beyond those
returned by the Twitter API [51] and, as initially planned, we relied on yet
another triangulation with the qualitative unit, leading to the establishment of
the so-called consolidate network database.

5.3 Consolidated data

When the complexity of analyzing the whole Twitter space connected with IoT
together with the discovery of the poor quality of the data that, on average,
it contains became evident, the research team adopted an auxiliary strategy
focused on a smaller set of qualitatively selected users. Thanks to the ongoing
qualitative field-exploration that the teams from ITU and LSE were conducting,
a large number of relevant Furopean actors in the IoT field were already known
as well as their use of social media platforms for professional communication.
Therefore the research team defined a two-fold goal: a) on the one side it was

54

Network ‘ Nodes | Edges | Density | Avg. Degree ‘ Clust.coeff

Full network | 319445 | 424781 | 0.000004 2.66 0.0001
Reduced network | 51580 | 156916 | 0.00006 6.08 0.0014
Consolidated network 103 1360 0.130 26.4 0.385

Table 9: The basic statistics of the three Twitter networks generated from the
consolidated dataset.

necessary to test the completeness of our qualitative selection of relevant IoT
actors and b) on the other side it appeared important to understand the online
communicative structure of this selected set of IoT users.

In order to achieve this, first ITU and LSE provided, for each selected IoT
expert a set of background information such as: social media handlers, geo-
graphical location, personal background, type of activity within the IoT space,
and if they have previously showed interest in ethics in IoT. From now on we
will refer to this enriched set of data as ”consolidated dataset” Starting from
the consolidated dataset UU used the public Twitter API to retrieve the full list
of followers and friends for each user. Using this in formation we built a directed
network of the Twitter space surrounding our initial set of qualitatively selected
ToT experts. Starting from this network we defined three derived networks that
gave us the opportunity to better understand the digital conversation about IoT
and its related community structure:

1. the full network containing all the followers and all the followees of the
103 initial Twitter users from the consolidated dataset.

2. the reduced network containing all the initial users from the consolidated
dataset and the followers or followees connected with at least two of the
initial users.

3. the consolidated network containing only the users from the consolidated
dataset and the connections among them.

In the following paragraphs we will first briefly present these networks and
their topology and then we will focus our attention on what can be learned
using the consolidated network.

Table 9 shows how the networks are remarkably different both in terms of
size as well as in terms of structure and basic topological characteristics. A first
consideration that can be done is that each member of the consolidated dataset
has a Twitter network that only partially overlaps with the ones of the other
members. The reduced network, that includes only the users who are connected
with at least two members of the consolidated dataset is one sixth of the full
network. This suggests that each member of the consolidated dataset has her
own Twitter audience that might or might not be interested in the conversation
about IoT and ethics in IoT. Looking at the general evolution of the three
networks it appears clear that beside the obvious reduction of the size of the

55

network the signs of community structure grow stronger: the reduced network
and the consolidated network are denser and more clustered.

The conceptual dependency between the three networks can be used to test
the completeness of the consolidated dataset as a selection of relevant expert
in the IoT space. Knowing, from the insights obtained with the qualitative
interviews, that Twitter is a valuable tool to be updated on the ongoing events
and conversation within the professional space of 10T, it is reasonable to assume
that any relevant name within that domain would be followed by a large number
of the members of the consolidated dataset. Checking the data we can see that
the top 100 most followed users of both the full network and reduced network
belong to the initial 103 members of the consolidated dataset, showing how that
qualitative selection is actually relevant for the large IoT community of Twitter.

5.3.1 Single-layer analysis

Once we have tested the completeness and the relevance of our selection of ex-
pert users in the consolidated dataset, we can study how this selected subset
of the IoT community on Twitter is structured. We do this in two steps: first
we analyze the following/follower relations between the members of the consoli-
dated dataset to find out the social forces behind the observed (online) network
structure. Then we adopt a multilayer approach as defined in Section 2 and us-
ing some of the methods described in Section 3 we explore the topical similarity
between the members of the consolidated network.

Given the enriched information available for the original users forming the
consolidated dataset, it has been possible to explore the social dynamics behind
their network structure. This has been done studying the nominal assortativity
[92] of the network for three specific attributes: geographic location, background
and involvement in the online conversation about IoT. All these attributes were
manually inserted and verified by the research team.

Nominal assortativity is a well known measure that quantifies the trend of a
specific node to connect with other nodes with the same categorical attribute.
In this case we tested nominal assortativity for geographic location (at a country
level), users’ professional background and involvement on the online conversa-
tion about ethics and IoT. The three hypotheses underlying these three tests
were:

e Geographical proximity is an indicator of the presence of mutual interests
between online IoT experts: users from the same geographical context will
be more likely to be connected online than users from different geographi-
cal contexts. This hypothesis would assume a significant positive value of
nominal assortativity.

e Complementary background is an indicator of the presence of mutual in-
terests between online IoT experts: users with complementary background
(e.g. one in Design and one in Software development) will be more likely
to be connected due to the added value of their complementarity for per-

56

spective business opportunities. This hypothesis would assume a negative
value of nominal assortativity.

e Ethical interest — the participation in the online discussion about ethics
and IoT — is an indicator of the presence of mutual interests between online
IoT experts: Users who participate in the ongoing online discussion about
IoT and ethics will be more likely to follow other users equally vocal
on the issue, This hypothesis would assume a positive value of nominal
assortativity.

Figure 27: Consolidated Network, Figure 28: Consolidated Network,
users’ background users’ country

Figure 29: Consolidated Network,
users’ participation in ethical dis-
cussion

The analysis of nominal assortativity for these attributes shows very lim-
ited assortativity. Geographical assortativity is the strongest one with a value
of 0.16, while both background complementarity and participation in ethical
discussion show values close to zero (0.05 and 0.02). These data suggest that
between the three hypotheses of possible social drivers behind online connectiv-
ity only geographical proximity is weakly supported. Professional background
does not show an assortative (or dissortative) behaviour, suggesting that the
reason to be connected on Twitter lies beyond the complementarity or simi-

57

larity of the professional profiles. Similarly, the level of activity on the online
ethical discussion about IoT does not play any role in the connectn process,
suggesting that ethics, even if valued on an individual level, does not act as a
discriminant for online connections. The only attribute that is, weakly, positive
is the geographical proximity suggesting that even if there is a European IoT
scene, geography still matters with the local context acting as a force driving
online connectivity.

5.3.2 Multilayer analysis

In addition to the topological structure of the following/follower relations dis-
cussed in the previous paragraph we also studied the actual interaction between
the members of the consolidated dataset and their online audiences. The main
goal of this part of research was to investigate the presence of topical com-
munities within the European IoT space. Since, as we showed in the previous
analysis, geographical proximity still plays a significant role into existing Twit-
ter relations we based this analysis on the actual interactions rather than on the
more stable following dynamic. Moreover we adopted the approach based on
multilayer networks (described in Section 2) combined with a qualitative anal-
ysis of the most frequently used hashtags aimed at identifying how subgroups
of the consolidated graph are actively engaged in thematic online conversation.

In order to do so, the hashtags included in the data have been first qualitative
filtered and grouped in themes, then the interactions taking place within those
themes have been mapped on a multilayer network structure where each layer
represents a specific theme. This approach allows us to represent within a
single multilayer network structure (the IoT Twitter space defined by the experts
included in the consolidated dataset and the Twitter users they were interacting
with) various types of interactions about various topics. It should be noticed
that while the starting nodes for this network are always the actors in the
consolidated datasets, the network also contains additional users that interacted
with the members of the consolidated dataset.

Table 10 provides an overview of the topical multilayer network. As it should
be visible from Table 10 the topical layers are different in size and topological
characteristics. With few exceptions, the number of components is relatively
small suggesting a common conversation involving multiple users rather than
isolated discussions.

While Table 10 gives us an overview of the layers forming the multilayer
structure it tells us nothing of how the users actually participated on the various
layers. Figure 30 shows the coverage [18] for the actors on the various layers.
It appears clear that the actual overlap between the users participating in the
various topics/layer is rather limited with the exception of the #IoT that shows
consistent overlap with almost all the other hashtags. This peculiar structure
suggests the existence, within the IoT umbrella, of multiple sub-domains with
relatively little overlap.

The existence of multiples thematic subgroups within the IoT Twitter space
is confirmed by the application of community detection methods to the data.

58

Layer | Nodes | Edges | Density | Comp. | Avg. Degree | Clust.coeff
All 1396 2562 0.0001 11 3.67 0.024
IoT | 819 1634 | 0.0024 7 3.99 0.032
Cybersecurity 213 422 0.009 6 3.96 0.072
Machine learning 75 92 0.016 5 2.453 0.015
Wearable tech 98 114 0.011 4 2.32 0.014
AR/VR 90 92 0.011 5 2.04 0.002
Women in Tech 90 119 0.014 2 2.644 0.028
eHealth | 108 141 0.012 2 2.61 0.012
Events 68 90 0.019 1 2.64 0.027
Startups 81 102 0.015 6 2.51 0.006
Technology 118 116 0.008 12 1.966 0.005
AT | 308 428 0.004 7 2.77 0.027
Privacy 88 90 0.011 9 2.04 0.008

Table 10: The basic statistics of the topical layers of the multilayer Twitter

network.

Events

eHealth

Figure 30: Interlayer coverage

Coverage

-100

0.75

Using the multiplex clique percolation method presented in Section 3.1.2 we can
observe how in the data the number of communities detected when we require
at least two common layers in a clique (m = 2) is relatively small counting for
only 8 communities where the largest one counts 16 members.

59

members

15
10
0
0 1 2 3 4 5 6 7 8

community

Figure 31: Size of the communities detected with Clique Percolation
(m=2)

The overall picture that emerges from the study of the Twitter IoT consoli-
dated network is complex. On the one side there is a topological common space
properly defined and identified by our manual selection of the key actors. Nev-
ertheless, beside this space of following/followers relations there is the actual
space of interaction that, in itself, is subdivided into the many domains that
characterize the IoT space.

60

Figure 32: Communities detected with Clique Percolation (m=2)

A Related literature

In this section we present an overview of related work on models for temporal
text networks, community detection in multiplex networks and network drawing,
which are the main areas where our results are positioned.

A.1 Modelling networks, time and text

Our concept of temporal text network is a combination of text, network topology
and time. In the literature there is a large number of models supporting one or
more of these aspects, and the objective of this section is to characterize existing
models from a common viewpoint.

Notice that there are entire well-established disciplines developed to address
text, network topology and time in isolation, and we do not review these here
as they are widely covered by text books [89, 3], described in numerous research
papers (see for example [14] and subsequent extensions), and included in sev-
eral software packages and systems. Instead we describe recent research efforts
combining at least two of these aspects.

Table 11 presents a summary of the models selected for this review, also
including our proposed model (core and extended temporal text network), or-
ganized according to four main criteria: (1) the type of graph used to represent
the topological portion of the data, (2) the type(s) of nodes allowed in the graph,

61

(3) the way in which text is represented in the model and (4) the way in which
time is represented in the model. As our aim is to comprehensively list models,
not papers, and the number of works using some of the models is very large,
we have sometimes arbitrarily and unavoidably chosen a key set of references
based on our knowledge and personal selection. Therefore, please notice that in
the table we only indicate selected references; additional references are included
in the text. Figure 33 complements Table 11 providing a visual intuition of the
reviewed models and of the new models introduced in this report.

62

In this

Given the variety of existing

The graph type is indicated as D: directed

(undirected if D is not specified), O: ordered, G: Graph, MG: Multi graph, BG:
Bipartite graph, ML: Multilayer graph. Node types indicate the domain of the
words), other representations of documents such as bags of words (BoW), and

also objects obtained by analyzing the text, such as concepts/topics.

models, X is broadly used to represent full text documents, parts of it (phrases,
table we only indicate selected references.

nodes, and we distinguish between A (nodes used to represent actors) and X

Table 11: Comparison of models representing two or more of the main as-
(nodes used to represent text-related objects).

pects of temporal text networks.

[86 ‘GL ‘20T ‘€1T]
[LTT ‘o11]

(8s]

[gv ‘eg]

‘spoy

so3poe

Se3po
S9OTLIOA
(Aetop) o3po
S90TLIOA
ECBIURETN
so3po

SIoA®]

S9OT)IOA
(smorpduur) sepe
(ywrpdur) se8po
SIoA®]

SIoA®]

se8pe A[jsowr
swilT,

JUSWND0P
JUSWNDOP
JUSWNDO0P
JULWNDOP
JUSWND0P

1deouod

1d9ou0d

00p ‘mog
oseryd ‘-oop

JILaWMOOP

piom
JIOWMOOP
ILUWNO0P

:d\DDH«\

sad A3} apoN

TN
odda
0ad
0dad
0ad
0d
nd
0d
0d
0d

0d/o
na/on

TINA

0d
TINO
TINO
DINA

ad Ay ydein

FI0M3oU 9x0) [eroduro) “IxX5
I0M)oU 1X09 [erodure) a10))
SUOT)RSIOATIOD JIPRATOJ
sseoo1d Jurpeerdg

FIOM)SU UOTPRID-IOYINY

S I0M)9U UOTYeI))

YI0M)9U OIIURMSS-0100G "dwia],
3I0M)9U DIJUBUIDS-01D0G
NIH

ydeid sseryd-juemmoo(
SYIOMPOU JUSTUNDO(]
syI0M)oU oFenIure|

X9} Teurpniisuor]

1%x09 Teioduray,

(1oAe[mymur) 10T
AJOWdIN

[eurpnjrduory

9OT[S-oWIL],

aouenbas joeju0))

awreN

(A) (B¥C) wn BO AR ® (€
t L a = < V=) =
u (‘ | tz t1 | t2
(a) contact sequence (b) time slices (t, and t, adjacent) (c) longitudinal network
\
=t =t
AB-S»BC)

=222
B, Ey, .

It

2

(d) memory network (e) multi-layer memory network (f) temporal text (g) longitudinal text

Ww\/ .\l1 : A,B;:'c::

(h) language network i) document networks (j) doc-phrase graph (k) HIN
X
t 2EE
A B © ® ® © g
(1) socio-semantic network (m) temp. socio-semantic network (n) citation network
e
= ‘ t1 ‘ 12 ‘
C‘I Ii D E | |
A
A C { —3 B
(o) author-citation network (p) spreading process model (q) polyadic conversation
=
t, t,
A Bp=pC
3 3
t2 tz
(r) core temporal text network (s) extended temporal text network

Figure 33: A visual gallery of models for time text and networks.

A.1.1 Time & Topology

The most basic family of models including both time and topology is the contact
sequence [53, 45]. Typical contact sequence models include a set of actors inter-
acting in the social graph, a set of directed edges, representing the direction of
such interactions (e.g., who sends a message to whom), and edge time annota-
tions represented as timestamps, absolute points in time or time intervals. This
model has been typically used to study information spreading [76, 26], and ex-
isting concepts such as motifs and triadic closure have been re-defined to study
the evolving structure of these networks [97, 126, 63].

Differently from contact sequences, where interactions are time-annotated
one by one, other types of models use sequences of time-annotated graphs,
where each graph is sometimes also called layer. In time-sliced models time is

64

expressed as an interval and an edge indicates that an interaction has happened
at some point during the time interval associated to the graph [88]. These
models are typically obtained starting from a contact sequence and aggregating
edges by time. In longitudinal networks relationships about the same or similar
actors are detected at different points in time [116, 117]. From a data modeling
point of view, time slicing and longitudinal networks are very similar, and in
practice the main difference lies in the nature of the time annotation associated
to each slice, where in time slicing adjacent slices are typically associated with
adjacent time intervals while in longitudinal network studies adjacent layers
represent network snapshots obtained at specific points in time. Different types
of time annotations are described for example in [7].

Memory models provide a different view over a temporal network, where
ordered tuples of two or more actors are represented as single nodes [113, 107,
75, 98]. For example, if an actor A is receiving one message from B and one from
C, and is later sending a message to B and one to C, a contact sequence loses
information on whether A is replying to Band C (B - A - B,C - A — C)
or forwarding the messages (B - A — C, C = A — B). A first-order memory
model will contain nodes for each pair of users and have an edge between two
nodes if the corresponding pairs appear on consecutive paths. In our example,
if A is replying we will have two edges in the memory model: (Ei, AB) and
(Cﬁ7 ﬁ), while if A is forwarding the messages we will have the edges (Ei,
m) and (C—/i, E) Memory models typically have a fixed depth (also called
order), but different path lengths can also co-exist inside the same model [112].

Time often plays an important role when networks are concerned, because
networks often represent dynamical systems. However, in Table 7?7 we have
only listed distinct data models explicitly providing time annotations. As an
example, growing network models [89] such as preferential attachment [5] aim
at explaining the observed topology of empirical networks based on how they
evolve in time from an initial small network. However, even if nodes and edges
join the network one after the other, there is no explicit representation of time
in the final model. Similarly, we have not listed papers about methods not
explicitly introducing new data models, such as [79].

A.1.2 Time & Text

Time is often present inside text, and commercial systems handling large human
information networks from Google mail to common text messaging applications
on smart phones can automatically identify the messages and annotate the text
with temporal information.

In research, text and time are studied together in the field known as temporal
information retrieval [2, 62]. This is an active area, also represented at the
TREC conference where state-of-the-art information retrieval methods compete
on various practical tasks. Time can be present in the text, as in the examples
above or as metadata, expressed as absolute or relative time and it can also be
specified in queries used to express information requirements [19].

65

Another set of studies has focused on how text evolves in time, and in par-
ticular sentiment, with case studies ranging from tweets [93] to songs, blogs and
presidential speeches [35]. Text and time are also studied across data sources,
for example to correlate texts from online news to trends emerging in time se-
ries such as financial data [77]. However, no specific data model is used for this
type of tasks, but only time-annotated documents (understood in a broad sense,
including words, etc.) and time series.

A.1.3 Text & Topology

Text and networks have been studied together in various areas, either without
considering time or using networks to represent relationships between texts.

Models where nodes represent parts of a document have been used in struc-
tured information retrieval, which was a particularly active research area when
hypertexts and markup languages became popular [70]. Text is often contained
inside some structure (e.g., a title, sections, sub-sections, etc.) and queries can
be tuned to return specific parts of a document instead of a full one. As an
example, if the searched keyword is contained inside Subsections 3.1 and 3.3
of a document, a query may return either the two subsections, or the whole
Section 3, depending on the method.

More relevant for this report are document networks, that are graphs whose
nodes represent text documents [24, 86]. These network models can be classified
in different groups depending on whether they include time or not; later in this
section we refer to citation networks as a type of directed document network
where time is also typically present. Text mining, and in particular clustering,
can be applied to document networks to identify groups of documents that are
similar not only because of their text but also because of their connections, as
summarized in a recent article about clustering attributed graphs [15].

Several works have focused on networks extracted from text, and we can
broadly classify them into models representing the text itself, aimed at char-
acterizing language, and models representing actors and concepts mentioned in
the text.

Networks where nodes represent words have been used to model both text
documents and languages [118]. For example, a document can be modeled as
a network where words are connected by an edge when they are contiguous,
or appear in the same sentence, paragraph, etc. Similarly whole languages can
be modeled focusing on the relationships between words, as in WordNet or
BabelNet.

With regard to the second class of models for networks extracted from text,
Named Entity Recognition methods are typically used to identify the nodes and
co-occurrence (or other language analysis approaches) to create edges among
them [34, 25]. In this case, the output network connects different portions of a
text document, or concepts extracted from the text. A model that has been used
to represent the relationships extracted from texts is known as heterogeneous
information network (HIN) [115, 100], allowing multiple types of nodes. In [128],
for example, the authors build a graph of relations between text documents,

66

phrases and salient phrases to study the similarities between different documents
based on their structure and semantics. In [71] the authors use a text-enriched
heterogeneous citation network to classify related authors and papers. Time
can also be theoretically incorporated in the HIN model as a new type of edge
attribute, but it remains an open research question how the model and/or the
analysis would benefit from that [101].

One of the concerns recently raised against using methods from social net-
work analysis to analyze social media is their intrinsic actor-centered approach
(e.g., people, companies, stakeholders), focusing on social interactions without
properly characterizing other aspects of the communication [108]. A similar
argument can be used against the use of just Natural Language Processing or
semantic networks [119].

Following this reasoning, a recent stream of research focused on combining
structural and semantic data simultaneously, which led to the formalization
of the socio-semantic network model [109, 108, 52]. Originally, socio-semantic
networks were just bipartite graphs interconnecting agents (also known as actors
in Social Network Analysis) with semantic objects called concepts, corresponding
for example to terms, n-grams, or lexical tags.

During the last decade the socio-semantic network model has been extended
to extract more valuable knowledge from social media. An illustrative example
of such extension can be found in [52] where the authors proposed to combine
the aforementioned social and socio-semantic networks into a single model. In
short, they use a single matrix representation where the diagonal sub-matrices
represent the relation between the same type of entities — agents and concepts
— and the off-diagonal matrices represent the relation between different ones
— agent/concept and concept/agent. From the point of view of data modeling,
HINs are very related to socio-semantic network models, even though HINs have
been introduced as more general modeling tools while socio-semantic networks
have emerged and are used in a specific application context.

A final work worth mentioning in this class is [104], where topic modeling
is performed using an extended model considering not only the association be-
tween topics, words and documents, but also the association between documents
and their authors. However, this has not been included in our summary table
because it introduces a generative model to summarize the data in the form of
parameters indicating the probability that a given actor produces a given set
of words, but not to represent the empirical data showing which actors have
written what text.

A.1.4 Time & text & topology

Many works in the literature have dealt with time, text and topology using ad
hoc models specifically designed to capture relevant aspects of specific platforms
such as Twitter. For example, in [121] a communication network is built in
three steps: (1) conversation trees are extracted from the dataset by inversely
following the chain of Twitter user interactions (replies, mentions and retweets);
(2) the trees are pruned based on the time elapsed between the root tweet and

67

the overlap of tweets and participants in the tree; (3) finally, all trees are merged
to generate a simple weighted graph of interactions between authors. The tree
of pruned conversations, also known as polyadic conversation has recurrently
appeared in the literature of network modeling and information retrieval [82] to
describe communication patterns, but there is no consensus on what is the best
method to build such model (e.g., how to compute the length of a conversation
in terms of time and/or tree’s depth). In summary, the amount of arbitrary
decisions made during network construction make it difficult to reuse these
models and the resulting networks in different contexts.

In [109] a temporal model was used to compare the co-growth of two epis-
temic networks, a Twitter dataset and a set of related blogs, with the underlying
social network of contacts. The temporal information attached to the edges of
the network is, afterwards, used to compare the order of formation of epistemic
and social communities.

Citation networks have received a lot of attention, and include text docu-
ments, directed edges between them and also time annotations [42, 6]. In addi-
tion, when author co-citation analysis is performed [129], the underlying data
model must also contain information about who authored which documents.

Information diffusion processes are often modeled including the diffused in-
formation item (meme, blog post, etc.), the actors propagating it, and the times
of propagation. This is for example the case of the model used in [80]. However,
the majority of these models do not use the text to perform the data analy-
sis, but (sometimes) to define the links between documents. Time can also be
used to infer network structure based on the observation of propagation events.
For example, the observation of a group of individuals repeatedly re-sharing
common tweets in the same temporal order may suggest that these people are
connected, and that information (tweets, in this case) passes through these
hidden connections [47]. In [110] existing theoretical diffusion models for inter-
connected networks are reviewed, extending concepts in information diffusion
to a multilayer model.

In order to preserve as much original information as possible, ééepanovié et
al. use a more generic process to build the network, mixing techniques from so-
cial network and semantic analysis. In their work, the communication network
is modeled as a simple, temporal graph using the Twitter “replies” to relate ac-
tors with each other. Then, they apply several semantic analysis procedures to
generate supporting networks that describe the text-related features. A compar-
ative analysis between the communication network and a subset of the semantic
networks is used to study several aspects of the overall system such as semantic
homophily and its evolution. However, from a modeling point of view text is
not explicitly represented in this model, but coded inside the semantic layers.
We will later use a related approach to exemplify how to use our model for data
analysis.

Some attention has also been devoted to models describing co-evolutionary
networks [49, 85]. Some of these models allow the representation of a status
associated to each node. Statuses can be used for example to represent the
political affiliation of the person represented by the node. In growing network

68

Figure 34: A taxonomy of multiplex community detection algorithms

models, the status can influence the evolution of the network for example by
increasing the probability that people will create connections with other indi-
viduals sharing the same political affiliation [67, 78]. As for the case of simple
network growing models, time is not typically kept at the end of the growing
process, and in addition status has not been used to model text to the best of
our knowledge. Therefore, we have not included these works in our summary
table, even if we consider them potentially relevant for this field if extended in
the future.

A.2 Community detection in multiplex networks

In this section we provide a taxonomy of multiplex community detection meth-
ods. We classify the main existing algorithms according to this taxonomy. Fig-
ure 34 and Table 12 show an overview of the related methods.

Table 12: Multiplex community detection algorithms covered in this survey

Algorithm Notation Reference
Non-Weighted Flattening NWF [9]
Weighted Flattening (Edge Count) WF_EC [9]
Weighted Flattening (Neighbourhood) WF_N [9]
Weighted Flattening (Differential) WF_Diff [65]
Cluster-Based Similarity Partitioning Algorithm CSPA [123]
Canonical Correlations Analysis CCA [123]
Frequent pattern mining-based community discovery ABACUS [12]
Subspace Analysis on Grassmann Manifolds SC-ML [36]
Ensemble-based Multi-layer Community Detection EMCD [120]
Principal Modularity Maximization PMM [122]
Generalized Louvain GLouvain [60]
Locally Adaptive Random Transitions LART [73]
Multi Layer Clique Percolation Method ML-CPM [124]
Modular Flows on Multilayer Networks Infomap [29, 39]
Multi Dimentional Label Propagation MLP [16]
Multilayer local community detection ML-LCD [57]
Andersen-Chung-Lang cut AClcut [59]

Our taxonomy is constituted of three levels of comparison among multiplex
community detection methods. The top-level distinction answers whether the
method is global or local. Global methods are designed to discover all possi-
ble communities in a network, thus requiring knowledge on the whole network
structure. Conversely, local methods (also known as node-centric) are query-
dependent, i.e., they are designed to discover the (local) community of a set of
query nodes as an input.

69

The second level of distinction concerns how the method solves the multi-
plexity problem. Three main approaches, illustrated in Figure 35, have been
used to solve this problem. The first approach, flattening, consists in simpli-
fying the multiplex network into a simple graph by merging its layers, then
applying a traditional (i.e., designed for simple graph) community detection al-
gorithm. The second approach, layer-by-layer, consists in processing each layer
of the multiplex network separately, then aggregating the resulting solutions.
The third class of algorithms, multi-layer, operates directly on the multiplex
network model.

The third level in our taxonomy corresponds to a fine-grained distinction
that defines the mathematical tools used to identify the multiplex communities.
Flattening branch distinguishes between non-weighted flattening and weighted
flattening, where the latter reflects some structural properties of the multiplex
network in the form of weights assigned to the output simple-graph edges, then it
uses a traditional community detection method for weighted graphs. Layer-by-
layer has four branches: pattern mining, matriz composition, consensus matrix
and spectral clustering. The former detects communities in each layer separately
using a simple-graph community detection, then makes use of pattern mining al-
gorithms to aggregate the resulting communities; the matrix-composition-based
methods identify structural features from each layer of the network via modu-
larity analysis, and then integrate them to identify community structure among
actors; the consensus-matrix-based methods combine multiple solutions over
the various layers to infer a single community structure that is representative
of the set of layer-specific community structures; the spectral-clustering-based
methods combine the characteristics of individual graph layers to form a low
dimensional representation of the original data then makes use of spectral clus-
tering to identify the multiplex communities. Multi-layer includes clique-based
methods, which exploit the concept of multi-layer clique to identify multiplex
communities, random walk-based methods, which introduce a multi-layer ran-
dom walker that can traverse interlayer edges, modularity-based methods, which
define a multi-layer modularity function and optimize it to produce the commu-
nity structure solution, label propagation methods, which utilize a multi-layer
affinity measure among actors given their connections on different layers and
then use a labeling method for the actors controlled by these affinity scores, and
within-group connectivity for local methods, which define a multi-layer within-
group connectivity function for the multiplex community and try to maximize
that function.

The output of a community detection algorithm for multiplex networks is
a set of communities C = {C4,Cs,...,Ck} such that each community contains
a non-empty subset of V. We will also use cluster as a synonym of commu-
nity, when it is clear from the context that we are referring to the set of nodes
assigned to a community, not to the subgraph underlying a community; an anal-
ogous remark applies to clustering as a set of communities. Figure 36 illustrates
different possible types of clusterings on a multiplex network.

A clustering C is total if every node in V' belongs to at least one community,
and it is partial otherwise. We also call a clustering node-overlapping if

70

ALL1 ‘ \

aml a '\I\ Cl /l
\q (ﬁ/ y - ‘\@
. C2 |

-

Multiplex Flattened Multiplex
Network Network Communities
(a)
c2_1
= b= / \
L1 ¢ L1 T
c1_1 31 __’/@

c1_2 c2_2

/'/ A \
B !)
% m L2 \'\V\IC 2/ /'/

Multiplex Layer-specific Multiplex
Network Communities Communities
(b)

PN
4 \
c2
\ /
\. 4
~_ . _.-

Multiplex Multiplex
Network Communities

(©)

Figure 35: Three main global approaches to discover communities in multiplex
networks. a) Flattening approach, b) layer by layer approach, and c¢) multi-
layer approach

71

(e) Actor-overlapping (f) Actor-disjoint

Figure 36: Different types of clustering on a multiplex network

(a) Pillar communities (b) Semi-pillar communities

Figure 37: Pillar and semi-pillar multiplex community structures

72

there is at least a node that belongs to more than one cluster, otherwise the
clustering is called node-disjoint. Analogously, if there is at least an actor
belonging to more than one cluster we call the clustering actor-overlapping,
otherwise it is called actor-disjoint. Notice that a node-overlapping clustering
is also actor-overlapping, while an actor-overlapping clustering may or may not
be node-overlapping. Table 13 reports the type of clustering produced by each
reviewed method. In addition, a multiplex community is called pillar if all the
nodes of each actor included in the community are covered by that community
and semi-pillar if the majority of (but not all) the nodes of each actor included
in a community belong to that community (Figure 37).

Table 13: Types of clustering featured by the reviewed methods. (*) indicates
that the answer depends on the single-layer clustering algorithm used by the
method.

Algorithm Actors Nodes Coverage
NWFE * * *
WF,N k * *
WF_Diff * * *
CSPA Disjoint Disjoint Total
CCA Disjoint Disjoint Total
ABACUS Overlapping Disjoint Partial
SC-ML Disjoint Disjoint Total
EMCD Disjoint Disjoint Total
PMM Disjoint Disjoint Total
GLouvain Overlapping Disjoint Total
LART Overlapping Disjoint Total

ML-CPM Overlapping Overlapping Partial
Infomap Overlapping Overlapping Total
MLP Disjoint Disjoint Total

In their survey work, [66] discussed a classification framework based on a
set of desired properties for multilayer community detection methods. These
properties are: multiple layer applicability, consideration of each layer’s impor-
tance, flexible layer participation (i.e., every community can have a different
coverage of the layers’ structure), no-layer-locality assumption (e.g., indepen-
dence from initialization steps biased by a particular layer), independence from
the order of layers, algorithm insensitivity, and overlapping layers (e.g., two or
more communities can share substructures over different layers).

We observe that the first of the above listed properties (i.e., multiple layer
applicability) should be true for all methods, therefore we do not elaborate on
this further. By contrast, the second property (i.e., consideration of each layer’s
importance) deserves a clarification. Also, both properties about independence
from node/layer order express a non-deterministic behavior of the community
detection method, therefore we will treat them as a single property. The insen-
sitivity property (i.e., independence or robustness against main tunable input

73

parameters) is instead specialized into two properties: one referring to whether
the number of communities is automatically derived or is an input parameter,
and one about whether an output multiplex community may contain a subset of
the layer-relations (instead of just being an induced subgraph of the community
node set).

In light of the above considerations, we next define four additional proper-
ties on top of the characteristics previously discussed. Table 14 organizes the
reviewed methods according to these four properties.

e P1: Layer relevance weight distribution. Some methods may take
into consideration each layer’s importance, thus allowing the assignment
of different weights to the layers in order to control their contribution
to the computation of the multiplex community structure. Such layer
weights could be learned based on the layer characteristics, or could be
user-provided based on a-priori knowledge (e.g., user preferences).

e P2: Determinism. This refers to whether a method has a deterministic
behavior, i.e., its output is independent from the order of examination of
the nodes and/or layers.

e P3: Auto-detection of the number of communities. Some methods
expect the number of communities to be decided ahead of time while other
methods can automatically define the number of communities.

e P4: Community structure inference. The default is that the struc-
ture of the communities corresponds to the multiplex subgraph induced
by the communities’ node-sets, i.e., the internal and external links of the
communities coincide with all links from the multiplex graph. Neverthe-
less, a method might detect communities such that the set of layers is
only partially exploited to infer the community structure solution, e.g., in
order to optimize the multilayer-modularity of the solution [120].

A.3 Network layouts

In this section we describe existing approaches to compute network layouts with
a single type of edges, also known as monoplex networks, and for multiplex
networks.

A.3.1 Monoplex Network visualization

Many layouts have been designed to visualize monoplex networks. Here we
briefly review the ones that are more relevant for our approach. For an extensive
review, the reader may consult [127].

Multi-scale layouts first create some core sub graphs, then they add other
nodes until all nodes and edges have been processed [127, 69]. Random layouts

74

Table 14: Algorithmic properties featured by the reviewed methods. (*) indi-
cates that the answer depends on the single-layer clustering algorithm used by
the method. (-) indicates that this feature is not measurable

Algorithm P1
NWF X
WF_N X
WF_EC X
WF_Diff v
CSPA X
CCA X
ABACUS x
SC-ML v
EMCD v
X
v
X
X
X
X
v
X

[\S]

P3 P4
*

*

* X *

PMM
GLouvain
LART
ML-CPM
InfoMap
MLP
ML-LCD
ACLcut

LRNRNYX X L Ax

N X SN AX XN ¥ * * x x4
X X[X X X X X X[|[&a X X Q] * % %

[32] and circular layouts [81] are two categories of layouts which are appropri-
ate for small graphs with few nodes and edges, because they do not consider
aesthetic criteria: many edge crossings and node overlappings can appear.
Among the most used visualization methods, force-directed algorithms con-
sider a graph as a physical system where forces change the position of nodes.
The two best known force-directed layouts are Fruchterman-Reingold [44] and
Kamada-Kawai [61, 58]. In the Fruchterman-Reingold layout nodes have repul-
sive power and push other nodes away, while edges attract neighboring nodes.
In this layout nodes are considered as steel rings having similar loads and edges
are like springs attracting neighbouring rings. This algorithm consists of three
main steps. First, all nodes are distributed randomly. Second, repulsive forces
separate nodes. The value of repulsive force depends on the positions of the
nodes. Third, for each edge and based on the position of nodes after repulsion,
attractive forces are calculated [44]. In the Kamada-Kawai layout an energy
function is defined for the whole graph based on shortest paths between nodes,
and positions are iteratively updated until the graph’s energy is minimized [61].
Bannister et al. [4] proposed a force-directed layout to change the position
of nodes so that more graph-theoretically central nodes are pushed towards the
centre of the diagram. In this algorithm, an additional force called gravity is
used to change the position of more central nodes. For each node v in a graph

75

G the position of the node is influenced by the following force:

)= 3 flwo)+ 3 falww)+ 3 fylo) 3)

u,veV (u,w)EE veV

where f, and f, are respectively repulsive and attractive forces, and f; is the
gravity force, measured as:

fo(v) = M [v](§ = Plv]) (4)

In this equation M[v] is the mass of node v, which can be set according to
node degree, P[v] is the position of v, 7; is the gravitational parameter and
& =%, P[v]/|V| is the centroid of all nodes. Notice that forces in the equations
above are vectors. Other extensions of force-directed layouts have considered
the inclusion of additional domain-specific information in the definition of the
forces.

Traditional force-directed methods are suitable only for small networks, but
they are very popular because they often practically succeed in highlighting
communities (that is, groups of well connected nodes) and increasing graph
readability. To address their shortcomings, force-based layout algorithms are
sometimes split into multiple phases, with an initial preprocessing of the data
to generate good starting node dispositions or to reduce data complexity. As an
example, Gajer et al’s method first partitions the graph into subgraphs. The
smallest subgraph is then processed independently and thus more efficiently.
Afterwards, a force-directed refinement round changes the values of initial node
positions and the next smallest subgraph is added to the previous one, with
these steps being repeated untill all nodes have been processed.

Another family of layouts, that can also be combined with force-directed
algorithms, are constraint-based layouts [37]. These layouts force nodes to ap-
pear at specific positions. For example, nodes are placed on a frame in a way
that they do not overlap, or are horizontally and vertically aligned, as in the
orthogonal layout [127, 37]. In these layouts it is more difficult to isolate special
structures such as communities and time complexity is noticeably high.

One important assumption in graph drawing is a correspondence between
some aesthetic features of the diagrams and their readability. Therefore, some
visualization algorithms explicitly target these features. One such criterion is
that too many edge crossings make a graph more difficult to interpret. The
crossing number cr(G) of a graph G is the smallest number of crossings ap-
pearing in any drawing of G [111]. Several algorithms have been proposed to
reduce edge crossing in monoplex networks. For example, Shabbeer et al. [114]
developed a stress majorization algorithm. In [111] and [20] the concept of
edge crossing is elaborated and equations for measuring the number of edge
crossings in different graphs are reviewed. Another aesthetic feature impacting
graph readability is node overlapping. Two popular methods to reduce node
overlapping were proposed in [55, 72].

76

A.3.2 Multiplex Network Visualization

Different methods have been discussed for visualizing multiplex networks. We
categorize these methods into four main classes: slicing, flattening, simplification-
based, and indirect.

One way of visualizing multiplex networks is to consider each layer or rela-
tionship type as a monoplex network and to connect these monoplex networks
using inter-layer edges [30]. The layers can have aligned layouts or independent
layouts, as shown in our initial example. Aligned layouts help users find similar
nodes in different layers by forcing the same node to have the same coordinates
on all layers, but structures existing only on one layer (for example commu-
nities) may not be clearly visualized. Independent layouts can show specific
structures of each layer, but may hide inter-layer patterns [106].

In flattening-based methods all nodes and edges are placed on the same
plane. In a mode-colored network, nodes from different layers are shown with
different colors [68], while for multiplex networks colors can be used to distin-
guish edges of different types. Apart from suffering from the same problems
of aligned slicing, the disadvantage of this method is that for networks with
high edge density relationships among nodes can be hidden by edges from non-
relevant layers and readability quickly decreases due to the network’s clutter.

Given the information overload associated to the presence of multiple types
of edges, a third approach consists in adding a so called simplification step before
using one of the two approaches above [106]. The simplification step removes
edges or layers that are not considered relevant for the visualization task. In
general, this can also be used as a pre-processing step before computing our
multiforce layout.

The last approach tries to visualize information derived from the network
instead of directly visualizing the original layers, which are again considered to
be too complex to allow a simple visual representation. Renoust et al. [102]
proposed a system for visual analysis of group cohesion in flattened multiplex
networks. This system, called Detangler, creates a so-called substrate network
from unique nodes of the multiplex network and a so-called catalyst network
from edges of different types. Erten et al. proposed three modified force-directed
approaches for creating slicing, flattened and split views of multilayer networks
by considering edge weights and node weights. The weights of nodes and edges
are based on the number of times they appear in different layers. In this ap-
proach interlayer relationships between nodes are ignored and node weights are
the same for all nodes when multiplex networks are visualized, so this approach
does not consider the specific features of the networks targeted in our work.

An extreme case of indirect methods, that we mention for completeness,
consists in not visualizing nodes and edges at all but only indirect network
properties, such as the degree of the nodes in the different layers or other sum-
mary measures [30, 106, 99]. These approaches are complementary to graph
drawing, and can also be used in combination with our proposal.

7

B The multinet library

In this section we describe multinet, an R package to analyze multiplex social
networks represented within the more general framework of multilayer networks.

Several packages for network analysis are available in R. Notable exam-
ples are statnet [50], containing libraries such as sna [23], network [22, 21] and
ergm [56], igraph [28] and RSiena [103]. Multinet complements these libraries
with several functions to analyze multiplex networks. In particular, the pack-
age provides functions focusing on the multilayer structure of the networks, for
example to find how relevant some layers are for an actor or to discover commu-
nities spanning multiple layers. Individual layers of a multiplex network, each
corresponding to a simple network, can instead be analyzed using the above-
mentioned packages, and in particular multinet contains functions to translate
the layers into igraph objects. The methods provided by multinet are distinct
from the ones provided by the multiplex library [94].

The multinet package also includes the following external code: eclat® (for
association rule mining), Eigen” and spectra® (for matrix manipulation), In-
fomap? (for the Infomap community detection method) and Howard Hinnant’s
date and time library!C.

B.1 The Rcpp_RMLNetwork class

The multinet package defines the Repp_RMLNetwork class to represent multi-
layer networks. Objects of this type are used as input or returned as output by
most functions provided by the package.

Internally, all the objects constituting the network are stored in sets with
logarithmic lookup and random access time, implemented as skip lists. This
solution is (linearly) less efficient than using a set in the C++ standard library,
but supports quick random access to the objects in the set, which is important
when synthetic networks are generated. For efficiency reasons, most of the
functions in the package are written in native C++ and integrated with R
using the Repp [38] library. Storage requirements for the network class are on
the order of the number of vertices plus the total number of edges (inter-layer
and intra-layer).

The ml.empty() function returns an empty multilayer network, not contain-
ing any actor, layer, vertex or edge!!. The function accepts an optional character
argument name, indicating the name of the network.

R> ml.empty()

Multilayer Network [0 actors, O layers, O vertices, O edges (0,0)]

Shttp://www.borgelt.net /eclat.html
Thttp://eigen.tuxfamily.org
8https:/ /spectralib.org
Yhttp://www.mapequation.org
LOhttps://github.com/HowardHinnant /date
HOther ways to create networks, explained later, are the function read.ml() to load networks
from files and the grow.ml() function to produce synthetic networks.

78

For convenience, the call to any of the network’s constructors and readers
returns an S4 object compatible with the R print function. Otherwise, all the
other functions’ return types are, by design, either (i) a named list of elements
(if the data is not relational) or (ii) a data frame.

B.1.1 Adding, retrieving and deleting network objects

Objects in a Repp-RMLNetwork object can be queried using a set of utility
functions. Built-in functions for retrieving and updating objects have the same
signature name: op.objects.ml, where objects can be actors, layers, vertices or
edges, and op is either blank, if we want to list the objects, or is the name of
a specific operation: num, to compute the number of objects of the requested
type, add or delete. If the number of actors is requested without specifying any
layer, the total number of actors is returned, including those not present in any
layer.

All the aforementioned functions require an Repp-RMLNetwork object as
first argument. Listing functions operating on actors and vertices also require
an array of layer names: only the actors/vertices in the input layers are returned.
If the array is empty, all the actors/vertices in the network are returned. Listing
functions operating on edges, instead, require two parameters: one indicating
the layer(s) from where the edges to be extracted start, and a second one with
the layer(s) where the edges to be extracted end. If an empty list of starting
layers is passed (default), all the layers are considered, while if an empty list of
ending layers is passed (default), the ending layers are set as equal to those in
the first parameter.

Now we can show a small example of how these functions work together. We
start by creating an empty network with two layers, named UL (upper layer)
and BL (bottom layer), respectively.

R> net <- ml.empty()
R> add.layers.ml(net, c("UL", "BL"))
R> layers.ml(net)

[1] "BL" uULu

New layers are by default undirected, that is, edges added to them are treated
as undirected. Directed layers are created by setting the directed parameter to
TRUE, or using the set.directed.ml() function, which is necessary if we want to
set directed intralayer edges. This function takes an Repp-RMLNetwork object
and a directionality data frame as input. The next fragment of code changes
the directionality of the inter-layer edges between the bottom and upper layers.

R> dir <- data.frame(layer1="UL", layer2="BL", dir=1)
R> set.directed.ml(net, dir)
R> is.directed.ml (net)

layerl layer2 dir
1 BL BL 0

79

2 BL UL 1
UL BL
4 UL UL

w
(e

Then, we create three actors A = {Al, A2, A3}.

R> add.actors.ml(net, "A")
R> add.actors.ml(net, c("B", "C"))

We can check that the actors have been added correctly:
R> num.actors.ml (net)
[1] 3
R> actors.ml (net)

[1] IICII IIAII IIBII

The next step to populate a network is to add actors to layers, where a pair
actor-layer defines a vertex. Notice that if we try to create the vertices without
having added the corresponding actors, the library will raise an error.

R> vertices <- data.frame(

+ actors C(HAII ngn non npn ngn NCII),
+ layers = C(HULH’ HULH’ HULH’ HBLH’ HBLH’ HBLH))
R> vertices

actors layers

1 A UL
2 B UL
3 C UL
4 A BL
5 B BL
6 C BL

R> add.vertices.ml(net, vertices)
R> vertices.ml(net)

actor layer

1 C BL
2 A BL
3 B BL
4 C UL
5 A UL
6 B UL

80

From the previous command you can see how the objects in a network are
stored into (mathematical) sets, that is, they are unordered: we cannot assume
that actor A will always be listed before actor B, and we have to sort the results
if we want to keep a specific order.

We can now add some intra-layer edges, in this case between all the ver-
tices in the upper layer and between vertices A and C' in the bottom one. In
addition, we create inter-layer edges between vertices ((A,UL), (B, BL)) and
((A,UL),(C,BL)). We begin by creating two data frames, one for each type of
edges:

R> intra_layer_edges <- data.frame(

+ actors_from = C(IIAH’ HAH’ HBH’ HAH)’
+ layers_from = c("UL", "UL", "UL", "BL"),
+ actors to = C(IIBH non non ucu)
+ layers_to = c¢("UL", "UL", "UL", "BL")
+

)

R> intra_layer_edges

actors_from layers_from actors_to layers_to

1 A UL B UL
2 A UL C UL
3 B UL C UL
4 A BL C BL

R> inter_layer_edges <- data.frame(

+ actors_from = c("A", "A"),
+ layers_from = c("UL", "UL"),
+ actors_to = c("B", "C"),
+ layers_to = c¢("BL", "BL")
"

)

R> inter_layer_edges

actors_from layers_from actors_to layers_to
1 A UL B BL
A UL C BL

Now we can add these edges to the network, and observe the result.

R> add.edges.ml(net, intra_layer_edges)
R> add.edges.ml(net, inter_layer_edges)
R> edges.ml(net)

from_actor from_layer to_actor to_layer dir

1 A BL C BL O
2 A BL B UL 1
3 A BL C UL 1
4 A UL B UL O
5 B UL C UL 0
6 A UL C UL O

81

R> edges.ml(net, layersl = "BL")

from_actor from_layer to_actor to_layer dir
1 A BL C BL 0

Notice that as we have only passed one argument (layersl = "BL”), edges.ml()
returns only the intra-layer edges in the BL layer.

B.1.2 Handling attributes

When we study a multilayer network, we can be interested in representing differ-
ent types of actors, add some categorical attribute to vertices or use a numerical
value to represent the strength of the ties. The multinet library provides a set
of functions to create attributes and add and retrieve attribute values. at-
tributes.ml() returns a data frame with two columns, the name of the attribute
and its type. As most of the functions in the library, the function accepts a
filtering parameter, target, to limit the query to specific types of objects: “ac-
tor” (attributes attached to actors), “vertex” (attributes attached to vertices)
or “edge” (attributes attached to edges). All the functions handling attributes
use target = “actor” by default.

R> attributes.ml (net)

[1] name type
<0 rows> (or O-length row.names)

The list of attributes of a newly created network is empty. We can create
attributes by calling the add.attributes.ml() function and passing a network,
names of the attributes, types of the attributes (“string” or “numeric”) and
the target as parameters. For example, the following code creates two string
attributes for actors (notice that “actors” is the default target, and ”string” is
the default attribute type):

R> add.attributes.ml(net, c("name", "surname"))
R> attributes.ml (net)

name type
1 surname string
2 name string

Using the add.attributes.ml() function we can also specify different attributes
for nodes and edges on individual layers, for which we must supply the layer
parameter. If we want, instead, to manage inter-layer edges two parameters are
needed, layerl and layer2, so that the attribute only applies to inter-layer edges
from the first layer to the second and vice-versa. The example below shows how
to use these parameters in practice to create a string attribute for the vertices
in the bottom layer.

82

R> add.attributes.ml(net, "username", type = "string",

+ target = "vertex", layer = "BL")
R> attributes.ml(net, target = "vertex")

layer name type
1 BL username string

At this point the get.values.ml() and set.values.ml() functions can be used
to set and retrieve attribute values.

R> set.values.ml(net, "name", c("A", "B"), values = c("Alice", "Scrondo"))
R> get.values.ml(net, "name", c("A", "C"))

value
1 Alice
2

B.2 Input, output and generation of RMLNetwork data

In the previous section we have introduced the Repp RMLNetwork class and
various methods to modify Repp_.RMLNetwork objects. However, users of the
library would more often create Repp_.RMLNetwork objects by reading them
from a file, artificially generating them, or loading some of the datasets directly
available in the library.

B.2.1 Importing and exporting data

The multinet package provides two input/output functions: read.ml() and write.ml().
Networks can be read from files using a library-specific text-based format, and
written to file using the same format or the GraphML syntax'?. The multinet
format is not compatible with other libraries, but it allows us to specify various
details, such as the directionality of intra-layer edges and attributes, as in the
following example:

#VERSION
2.0

#TYPE
multiplex

#LAYERS
research, UNDIRECTED
twitter, DIRECTED

#ACTOR ATTRIBUTES
affiliation,STRING

12http://graphml.graphdrawing.org

83

#VERTEX ATTRIBUTES
twitter, num_tweets, NUMERIC

#EDGE ATTRIBUTES
research, num_publications, NUMERIC

#ACTORS
Luca,ITU
Matteo,UU
Davide,UU

#VERTICES
Luca,twitter,53
Matteo,twitter,13

#EDGES

Luca,Matteo,research,9
Luca,Matteo,twitter

When we read this multiplex network we can also specify that we want all the
actors to be present in all the layers, using the align parameter. The difference
between the two obtained networks can be seen by checking the basic network
statistics:

R> net <- read.ml(file = "example_io.mpx")
R> net

Multilayer Network [3 actors, 2 layers, 4 vertices, 2 edges (2,0)]

R> aligned_net <- read.ml("example_io.mpx", align = TRUE)
R> aligned_net

Multilayer Network [3 actors, 2 layers, 6 vertices, 2 edges (2,0)]

Both Repp_.RMLNetwork objects, net and aligned_net, have two layers and
three actors; but the align = TRUE parameter in the second call to the read.ml()
adds a new vertex to each layer for every actor in the input file.

When no special information is needed, e.g., there are no attributes, no
isolated nodes and all edges are undirected, the format becomes as simple as a
list of layer-annotated edges:

Luca,Matteo,research
Davide,Matteo,research
Luca,Matteo,friendship

84

A multiplex network can also be created starting from igraph objects, where
each graph represents a layer. For this to be possible, the vertices of the graphs
must have a name attribute indicating the name of the corresponding actor.

For example, consider the following graphs:

R> 11

IGRAPH de3bd83 UN-- 3 3 --

+ attr: name (v/c)

+ edges from de3bd83 (vertex names):
[1] A--B A--C B--C

R> 12

IGRAPH ae70b79 UN-- 2 1 --

+ attr: name (v/c)

+ edge from ae70b79 (vertex names):
[1] A--C

They can be added as layers of a multiplex network as follows:

R> n <- ml.empty()

R> add.igraph.layer.ml(n, 11, "layerl")
R> add.igraph.layer.ml(n, 12, "layer2")
R> n

Multilayer Network [3 actors, 2 layers, 5 vertices, 4 edges (4,0)]
R> edges.ml(n)

from_actor from_layer to_actor to_layer dir

1 A layer1l B 1layerl 0
2 A layer1l C layerl O
3 B layer1l C 1layerl 0
4 A layer2 C layer2 O

B.2.2 Generation

The library provides basic functionality to generate synthetic multiplex net-
works, following the approach proposed by [84]. This problem is approached
by allowing layers to evolve at different rates, based on internal or external dy-
namics. Internal dynamics can be modelled using existing network models (for
example, preferential attachment), assuming that how the layer grows can be
explained only looking at the layer itself. External dynamics involve importing
edges from other layers. Within this perspective the intuition is that relations
existing on a layer might naturally expand over time into other layers (e.g. co-
workers starting to add each other as friends on Facebook). The package also
allows different growing rates for different layers.

85

In the following example we create a multiplex network with 3 layers based
on the Preferential Attachment [5] and the Erdos-Renyi models [40]. The first
and last layers will only evolve according to their internal models (pr.external
= 0), while the second will have a probability of .8 of evolving according to
external dynamics, that is, importing edges from other layers (pr.external =
.8). Note that all the probability vectors must have the same number of fields,
one for each layer. By defining pr.internal and pr.external, we are also implicitly
defining pr.no.action (1 minus the other probabilities, for each field/layer). In
the example, the third layer grows at a lower speed than the others, having an
(implicitly defined) pr.no.action = .1.

R> models_mix <-

+ c(evolution.pa.m1(3, 1), evolution.er.ml(100), evolution.er.ml(100))
R> pr.internal <- c(1, .2, .9)

R> pr.external <- c(0, .8, 0)

The probability to import edges from the other layers in case external events
happen is specified using a dependency matrix. The following matrix specifies
that the second layer should import edges from the first layer with probability
1 if an external evolutionary event is triggered. It is expected that the values
on each row of the matrix add to 1.

R> dependency <- matrix(c(1, 1, 0, 0, 0, 0, 0, 0, 1), 3, 3)
R> dependency

(,11 [,2] [,3]
[1,] 1 0 0
[2,1] 1 0 0
[3,] 0 0 1

We can now generate the network, with 100 actors and 100 growing steps.

R> ml_generated_mix <-

+ grow.m1(100, 100, models_mix, pr.internal, pr.external, dependency)
R> num.edges.ml (ml_generated_mix, layersl = "10")

(1] 92

R> num.edges.ml(ml_generated_mix, layers1l = "11")

[1] 100

R> num.edges.ml (ml_generated_mix, layersl = "12")

[1] 63

86

B.2.3 Predefined data

Another way to obtain network data without having to manually construct it is
to load some well-known networks already available inside the package. These
are loaded using functions beginning with “ml”, followed by the name of the
network, e.g., ml.florentine().

In the remainder of the article we will use the AUCS network, included in
the current version of the multinet package as an example dataset and often
used in the literature to test new methods. The data, described by [33], were
collected at a university research department and include five types of online and
offline relations. The population consists of 61 employees, incuding professors,
postdocs, PhD students and administrative staff.

R> net <- ml.aucs()
R> net

Multilayer Network [61 actors, 5 layers, 224 vertices, 620 edges (620,0)]
R> layers.ml(net)

[1] "coauthor" "lunch" "leisure" "facebook" "work"

B.3 Data exploration

Multinet provides a basic visualisation function. We can produce a default
visualization just by executing plot(net), but to make the plot more readable
we shall add a few details. In particular: (1) we explicitly compute a layout that
draws each layer independently of the others, as declared by setting interlayer
weights (w_inter) to 0, (2) we plot the layers on two rows, to better use the
space on the page (grid), (3) we remove the labels from the vertices, to increase
readability (vertex.labels = 77), and (4) we add a legend with the names of the
layers. The multiforce layout, used for all graph visualizations in this article, is
described in Section 3.4.

R> 1 <- layout.multiforce.ml(net, w_inter = 0, gravity = 1)
R> plot(net,

+ layout =1,

+ grid = c(2, 3),

+ vertex.labels = "",

+ legend.x = "bottomright", legend.inset = c(.05, .05)
+)

We can also use the attributes to inspect the relationship between the role
of the actors and the topology of the network. We start by retrieving the role
of each vertex (vertex roles), and a list of all the distinct roles.

R> attr_values <-
+ get.values.ml(net, actors = vertices.ml(net)[[1]], attribute = "role")

87

R> vertex_roles <- as.factor(attr_values[[1]])
R> num_distinct_roles <- length(levels(vertex_roles))
R> levels(vertex_roles)

[1] "Admin" "Assistant" "Associate"
[4] "Emeritus" "NA" "PhD"
[7] "Phd (visiting)" "Postdoc" "Professor"

Now we can map each vertex role into a color, representing the role of the
corresponding actor. To do this, we use the RColorBrewer library, allowing us
to produce an appropriate combination of colors.

R> color_map = brewer.pal(num_distinct_roles, "Paired")
R> vertex_colors <- color_map[vertex_roles]

Plotting works as usual, with an additional parameter to set the vertex colors
(vertex.color) and two legends for the edge types and for the roles.

R> plot(net,

+ layout =1,

+ grid = c(2, 3),

+ vertex.labels = "",

+ vertex.color = vertex_colors

+)

R> legend("bottomright",

+ legend=levels(vertex_roles),

+ col = color_map,

+ bty = "n", pch = 20, pt.cex = 1, cex = .5, inset = c(0.05, 0.05)
+)

R> legend("bottomright",

+ legend=layers.ml (net),

+ bty = "n", pch = 20, pt.cex = 1, cex = .5, 1inset = c(0.2, 0.05)
+)

B.4 Measuring a network

A traditional way of measuring a multiplex network is to focus on each layer at
a time, considering it as an independent graph. For example, the summary/()
function computes a selection of measures on all the layers, and also on the
flattened network.

R> summary (net)

n m dir nc dens cc apl dia
flat 61 620 0 1 0.33879781 0.4761508 2.062842 4
coauthor 26 21 0 8 0.07000000 0.4285714 1.500000 3
facebook 32 124 0 1 0.25000000 0.4805687 1.955645 4
leisure 47 88 0 2 0.08140611 0.3430657 3.115911 8

88

lunch 60 193 0 1 0.10903955 0.5689261 3.188701 7
work 60 194 0 1 0.10960452 0.3387863 2.390395 4

The columns indicate:

1. n order (number of nodes)
2. m size (number of edges)
3. dir directionality

4. nc number of connected components (strong components for directed net-
works)

dens density
cc clustering coefficient (directed networks are treated as undirected)

apl average path length

® N o

dia diameter

To compute other functions or perform another type of layer-by-layer analy-
sis we can convert the layers into igraph objects, using the as.igraph() function,
for a single (group of) layer(s), or the as.list() function to obtain a list with
all the layers as igraph objects in addition to the flattened network. Once the
igraph objects have been generated, all the network measures available in igraph
can be computed.

R> layers <- as.list(net)
R> names (layers)

[1] " _flat_" "coauthor" "facebook" "leisure" "lunch" "work"

R> # Degree centralization of a layer (with igraph)
R> centralization.degree(layers[[3]])$centralization

[1] 0.233871

R> # Actors with highest degree on a layer (with igraph)
R> head(sort (degree(layers[[3]]), decreasing = T))

U79 U91 U124 Ue67 U4 U130
15 14 13 13 12 12

89

B.4.1 Layer comparison

In addition to a layer-by-layer analysis, we can compare layers using several
different approaches. All the methods mentioned in this section are explained
in Section 3.3.

For example, to quantify the difference between the degree distributions
in different layers we can use the layer.comparison.ml() function to produce a
table with pair-wise comparisons. The following code computes the dissimilarity
between degree distributions, computed using the Jeffrey dissimilarity function
(the higher the values, the most dissimilar the two layers).

R> layer.comparison.ml(net, method = "jeffrey.degree")

coauthor lunch leisure facebook work
coauthor 0.0000000 2.8966530 0.4521076 2.0214010 0.5917494
lunch 2.8966530 0.0000000 1.3288250 0.4207678 0.8372414
leisure 0.4521076 1.3288250 0.0000000 1.0177980 0.2118452
facebook 2.0214010 0.4207678 1.0177980 0.0000000 0.7106788
work 0.5917494 0.8372414 0.2118452 0.7106788 0.0000000

The layer.comparison.ml() function can also be used to compute multiplex-
specific comparisons considering the fact that the same actors may be present
on the different layers. In fact, one important comparison can be made to check
to what extent this is true:

R> layer.comparison.ml (net, method = "jaccard.actors")

coauthor lunch leisure facebook work
coauthor 1.0000000 0.4166667 0.4117647 0.2954545 0.4166667
lunch 0.4166667 1.0000000 0.7833333 0.5333333 0.9672131
leisure 0.4117647 0.7833333 1.0000000 0.5192308 0.7833333
facebook 0.2954545 0.5333333 0.5192308 1.0000000 0.5333333
work 0.4166667 0.9672131 0.7833333 0.5333333 1.0000000

The function returns 0 if there are no common actors between the pair of
layers, and 1 if the same actors are present in the two layers. If there is a strong
overlapping between the actors, then we can ask whether actors having a high
(or low) degree on one layer behave similarly in other layers. To do this we can
compute the correlation between the degrees:

R> layer.comparison.ml (net, method = "pearson.degree")

coauthor lunch leisure facebook work
coauthor 1.0000000 0.1486368 0.48084471 0.5472774 0.42719422
lunch 0.1486368 1.0000000 0.28151667 0.3125598 0.24647515
leisure 0.4808447 0.2815167 1.00000000 0.3781743 0.06805041
facebook 0.5472774 0.3125598 0.37817432 1.0000000 0.54060113
work 0.4271942 0.2464752 0.06805041 0.5406011 1.00000000

90

The Pearson (or linear) correlation between the degree of actors in the two
layers is in the interval [—1,1]. The smallest value (-1) indicates that high-
degree actors in one layer are low-degree in the other and vice versa, while the
largest value (1) is returned if high-degree (resp., low-degree) actors in one layer
are high-degree (resp., low-degree) actors in the other. It is important to note
that the correlation only depends on the number of incident edges for each pair
(actor, layer), and not on which actors are adjacent: they can be the same or
different actors.

We can also check to what extent actors are adjacent to the same other
actors in different layers, by checking the amount of overlapping between edges
in the two layers, which will be 0 if no actors that are adjacent in one layer are
also adjacent in the other and 1 if all pairs of actors are either adjacent in both
layers or in none.

R> layer.comparison.ml(net, method = "jaccard.edges")

coauthor lunch leisure facebook work
coauthor 1.00000000 0.06467662 0.1010101 0.05839416 0.09137056
lunch 0.06467662 1.00000000 0.2772727 0.17843866 0.33910035
leisure 0.10101010 0.27727273 1.0000000 0.15846995 0.20512821
facebook 0.05839416 0.17843866 0.1584699 1.00000000 0.18656716
work 0.09137056 0.33910035 0.2051282 0.18656716 1.00000000

The package provides additional similarity functions, listed in Table 15.

B.4.2 Degree and degree deviation

Various functions can be used to measure individual actors. As a starting point,
the following is the list of highest-degree actors on the whole multiplex network:

R> deg <- head(sort(degree.ml(net), decreasing = T))
R> deg

U4 Ue7 U91 U123 U79 U110
49 47 46 44 44 41

However, in a multiplex context degree becomes a layer-specific measure.
We can no longer just ask “who is the most central actor” but we should ask
“who is the most central actor on this layer?” Let us see how the most central
actors look like when we “unpack” their centrality on the different layers:

R> data.frame(

+ facebook = degree.ml(net, actors = names(deg), layers = "facebook"),
+ leisure = degree.ml(net, actors = names(deg), layers = "leisure"),
+ lunch = degree.ml (net, actors = names(deg), layers = "lunch"),

+ coauthor = degree.ml(net, actors = names(deg), layers = "coauthor"),
+ work = degree.ml (net, actors = names(deg), layers = "work"),

+ flat = deg

+)

91

Overlapping Distribution dissimilarity =~ Correlation

jaccard.actors dissimilarity.degree pearson.degree
jaccard.edges KL.degree rho.degree
jaccard.triangles jeffrey.degree

coverage.actors
coverage.edges
coverage.triangles
sm.actors
sm.edges
sm.triangles
rr.actors

rr.edges
rr.triangles
kulczynski2.actors
kulczynski2.edges
kulczynski2.triangles
hamann.actors
hamann.edges
hamann.triangles

Table 15: Similarity functions implemented in the library.

facebook leisure lunch coauthor work flat

U4 12 1 15 NA 21 49
ue7 13 2 12 NA 20 47
U91 14 14 7 3 8 46
U123 11 NA 6 NA 27 44
u79 15 7 13 NA 9 44
U110 9 7 7 4 14 41

From the above result we can see how neighbors may not be equally dis-
tributed across the layers. Actor U4, for example, has the largest degree within
the 6 actors analyzed in both the facebook layer and the flattened network.
However, it has no presence in the coauthor layer and a very small degree in
the leisure layer. If we want to quantify to what extent actors have similar or
different degrees on the different (combinations of) layers, we can compute the
standard deviation of the degree:

R> sort(degree.deviation.ml(net, actors = names(deg)))

U110 U91 Uur9 ue7 U4 U123
3.310589 4.261455 5.230679 7.418895 8.133880 9.987993

B.4.3 Neighborhood and exclusive neighboorhood

The neighbors of an actor a are those distinct actors that are adjacent to a on a
specific input layer, or on a set of input layers. While on a single layer degree and

92

neighborhood have the same value, they can be different when multiple layers
are taken into account, because the same actors can be adjacent on multiple
layers leading to a higher degree but not a higher neighborhood.

R> degree.ml(net, actors = "U4", layers = c("work", "lunch"))

U4
36

R> neighborhood.ml(net, actors = "U4", layers = c("work", "lunch"))

U4
21

The xneighborhood.ml() function (exclusive neighborhood) counts the neigh-
bors that are adjacent to a specific actor only on the input layer(s) [?]. A high
exclusive neighborhood on a layer (or set of layers) means that the layer is im-
portant to preserve the connectivity of the actor: if the layer disappears, those
neighbors would also disappear.

R> neighborhood.ml(net, actors = "U91", layers = c("facebook", "leisure"))

Uo1
22

R> xneighborhood.ml (net, actors = "U91", layers = c("facebook", "leisure"))

Uo1
13

B.4.4 Relevance

Based on the concept of neighborhood, we can define a measure of layer relavance
for actors [11]. relevance.ml() computes the ratio between the neighbors of an
actor on a specific layer (or set of) and the total number of her neighbors.
Every actor could be described as having a specific “signature” represented by
her presence on the different layers.

R> data.frame(

+ facebook = relevance.ml(net, actors = "U123", layers = "facebook"),
+ leisure = relevance.ml(net, actors = "U123", layers = "leisure"),
+ lunch = relevance.ml (net, actors = "U123", layers = "lunch"),
+ coauthor = relevance.ml(net, actors = "U123", layers = "coauthor"),
+ work = relevance.ml (net, actors = "U123", layers = "work")
+)

facebook leisure lunch coauthor work
U123 0.3793103 NA 0.2068966 NA 0.9310345

93

Similarly to neighborhood also relevance can be defined using the concept
of exclusive neighbor. The xrelevance.ml() function measures how much the
connectivity of an actor (in terms of neighbors) would be affected by the removal
of a specific layer (or set of layers):

R> data.frame(
+ facebook = xrelevance.ml(net, actors = "U123",
+ leisure = xrelevance.ml(net, actors = "U123",
+ lunch = xrelevance.ml (net, actors = "U123",
+ coauthor = xrelevance.ml(net, actors = "U123",
+ work = xrelevance.ml (net, actors = "U123",
+)

facebook leisure lunch coauthor work
U123 0.06896552 NA 0 NA 0.5172414

B.4.5 Distances

layers
layers
layers
layers
layers

"facebook"),
"leisure"),
"lunch"),
"coauthor"),
"work")

In addition to single-actor measures, the library can also be used to compute
multilayer distances between pairs of actors. Distances are defined by [85] as
sets of lengths of Pareto-optimal multidimensional paths. As an example, if two
actors are adjacent on two layers, both edges would qualify as Pareto-optimal
paths from one actor to the other, as edges on different layers are considered
incomparable (that is, it is assumed that it makes no sense in general to claim
that two adjacent vertices on Facebook are closer or further than two adjacent
vertices on the co-author layer). Pareto-optimal paths can also span multiple

layers.

R> distance.ml(net, "U91", "U4")

from
U91
U91
U91
U91
U91
U91
U91
U91
U91
U91

© 00 NO O WN -

-
o

to coauthor lunch leisure facebook work
U4
U4
U4
U4
U4
U4
U4
U4
U4
U4

N
-
(@]
(@]

O OO NOO - OO
O, OO O OO~ N
OO, OO WN = O
O O OO+ OO OO
NP, PP, OOOOOO

B.5 Community detection

A common network mining task is the identification of communities. The library
includes the multiplex clique percolation algorithm described in Section 3.1.

94

In addition, the function glouvain.ml() uses the algorithm described by [?
] to find community structures across layers, where vertices in different layers
can belong to the same or a different community despite corresponding to the
same actor. This method belongs to the class of community detection methods
based on modularity optimization, that is, it tries to find an assignment of
the vertices to communities so that the corresponding value of modularity is
as high as possible. Multilayer modularity is a quality function that is high if
most of the edges are between vertices in the same community and if vertices
corresponding to the same actors are also often in the same community. The
function glouvain.ml() accepts three parameters to modify the resolution of
the modularity (gamma), the inter-layer weight connectivity (omega) and the
number of nodes after which the algorithm will make the computation on the
fly without keeping the full data in memory (limit).

R> ml_clust <- glouvain.ml(net)
R> head(ml_clust)

actor layer cid
1 U99 coauthor 0
2 U99 lunch 0
3 U99 leisure 0
4 U99 work 0
5 U109 lunch 0
6 U109 1leisure 0

The result of the function is a data frame with two columns identifying a
vertex, as a pair (actor,layer), and a third column with a numeric value (cid)
identifying the community to which the vertex belongs.

The library provides other community detection algorithms: ABACUS [11]
(for overlapping and partial community detection) and Infomap (for partition-
ing/overlapping community detection on undirected or directed networks).

95

C Meetup data

In this section we present the detailed list of MeetUp groups analyzed in the

project.

Name Country Event date Attendance Events
first last min. maz. avg.

Internet of Things Lon- GB 2011-10-20 2020-11-27 1 349 104,71 91
don
IoT Zurich CH 2011-12-05 2018-12-07 4 137 36,97 68
Internet of Things ES 2012-02-11 2018-04-25 5 120 33,00 50
Madrid Meetup
Internet of Things Mu- DE 2012-05-16 2018-11-29 1 318 79,38 39
nich
Mozilla IOT GB 2012-09-26 2018-05-10 5 88 47,41 17
Internet of Things Bil- ES 2013-07-13 2017-10-27 1 12 5,10 10
bao
Internet of Things GB 2013-04-30 2017-11-07 32 63 49,875 16
(IoT) Midlands UK
Internet of Things Lis- PT 2013-05-08 2013-06-04 1 19 12,33 3
boa
Internet of Things SE 2013-04-09 2017-09-27 30 134 83,83 30
Stockholm
IoT Berlin DE 2013-05-21 2016-11-21 27 156 72,33 18
IoT Trento - The Inter- 1T 2013-05-25 2016-01-12 1 10 4,11 9
net of Things Group of
Trento
IoTBE - the Belgian BE 2013-07-04 2018-09-27 1 112 30,41 80
Internet of Things
community
Hardware Pioneers GB 2013-11-14 2018-12-06 1 252 68,78 41
#London
Warsaw IOT Develop- PL 2013-10-24 2016-02-23 5 15 8,67 3
ers
Internet of Things Novi RS 2014-02-27 2018-10-04 2 63 18,90 20
Sad
Internet of Things San- ES 2014-02-21 2018-03-15 5 23 16,11 9
tander
Internet of Things Ox- GB 2014-01-22 2017-04-27 25 89 46,60 10
ford
Internet of Things BE 2014-01-17 2019-04-09 2 65 23,56 37
Ghent
Internet of Things GB 2014-03-24 2018-10-10 8 55 22,77 31
Guildford
Internet of Things FI 2014-04-09 2018-12-18 1 126 41,28 57
Helsinki
IoT Rhineland DE 2014-11-27 2018-10-12 1 34 12,63 11
IoT Belfast GB 2016-05-16 2019-02-20 9 87 46,89 19
IOT & Objets Con- FR 2014-05-27 2018-09-19 25 94 53,60 10

nectés // Hardware
en Auvergne - Rhéne-
Alpes

Table

16: MeetUp groups collected. Part I.

96

Name Country Event date Attendance Events
first last min. maz. avg.

TIoT Toulouse FR 2014-05-13 2016-06-09 19 55 37,00 6

Internet of Things GB 2014-06-24 2018-11-21 1 163 88,72 33

Thames Valley

Berlin Internet of DE 2014-05-20 2014-06-05 3 4 3,50 2

Things (IoT) solutions

Meetup

IoT Austria - Local AT 2014-05-14 2018-06-13 0 167 30,46 116

Group Vienna

Grenoble Internet of FR 2014-06-23 2018-09-25 3 47 22,31 16

Things and Embedded

Systems

Internet of Things Mil- GB 2015-11-12 2018-12-04 35 52 41,42 7

ton Keynes Meetup

IoT Hessen (Frankfurt) DE 2015-03-12 2019-03-13 2 90 40,09 31

Hamburg Internet of DE 2014-10-08 2018-05-28 0 54 27,13 22

Things (IoT) User

Group

The Business of IoT GB 2014-10-06 2016-03-09 15 91 61,14 7

IoT Bratislava SK 2014-10-07 2018-10-02 10 45 25,27 37

IoT, IoE & Wear- GB 2014-11-13 2016-03-15 23 155 57,85 7

ableTech - London

Evolution of IoT to- GB 2014-11-14 2015-05-05 14 21 17,33 3

ward IoT Ecosystems -

London Meetup

Open IoT London GB 2014-12-17 2015-02-19 20 61 42,00 3

London IoT for Art & GB 2014-12-03 2015-05-21 20 49 35,25 4

Entertainment

Automation Process PL NA NA 1 1 1,00 2

Managment in Cloud

like IoT [Gdansk]

Internet of Things IT 2015-10-29 2016-10-25 1 25 11,00 3

[IoT] Bologna

TIoT Austria - Local AT 2015-03-10 2018-10-02 1 101 19,44 18

Group Salzburg

ToT Austria - Local AT 2015-02-26 2017-11-23 1 100 16,57 14

Group Linz

IoT Austria - Local AT 2015-11-04 2017-05-09 1 101 16,20 10

Group Graz

openHAB Meetup DE 2015-03-06 2017-03-03 12 29 17,00 4

Diisseldorf

Internet of Things SE 2015-02-18 2016-10-11 3 51 27,15 13

Malmo

IoTNL - Internet of NL 2015-03-20 2015-11-11 46 110 73,50 4

Things founders & em-

ployees

Athens IoT Meetup GR 2015-03-19 2018-05-10 22 195 70,00 7

IoT Meetup Franken DE 2015-03-17 2019-11-19 2 26 8,82 37

Table 17: MeetUp groups collected. Part II.

97

Name Country Event date Attendance Events
first last min. maz. avg.

Internet of Things RO 2015-03-19 2017-03-27 4 45 22,60 10

Timisoara

Amsterdam IoT Living NL 2015-04-23 2018-04-30 3 83 43,50 16

Lab

Internet of Things - HR 2015-04-29 2017-11-21 27 93 69,50 6

Croatia

IoT Workshop - Bu- HU 2015-04-28 2018-04-26 47 187 119,94 19

dapest

IoT - Internet of PL 2015-05-12 2017-12-06 1 53 21,40 3

Things Krakéw

Hungarian IoT Cre- HU 2015-05-04 2019-03-05 1 38 16,23 47

ativity Meetup

IoT Austria - Local AT 2015-10-17 2017-05-09 1 100 12,00 14

Group Klagenfurt

Paris AI, Robotics & FR 2015-09-15 2016-07-13 49 82 67,75 4

IoT Meetup

TIoT Dresden - The In- DE NA NA 15 15 15,00 1

ternet of Things Group

of Dresden

Brighton ’Internet of GB 2015-06-30 2017-12-11 24 82 48,89 9

Things’ Meetup

IOT in Brussels BE 2015-06-02 2018-11-23 1 49 8,66 63

Internet of Things - EE 2015-06-04 2018-04-04 4 10 6,67 6

Tallinn

Internet of Things BE 2016-11-24 2016-11-24 22 22 22,00 1

(IoT) Leuven

IoT & Big Data FR 2015-09-10 2016-04-21 51 112 81,50 2

Thinkers Meetup

Torino IoT Meetup 1T 2015-07-20 2018-12-17 2 58 10,97 33

IoT & Data Science In- GB 2015-09-22 2018-05-09 1 178 75,50 16

novators UK

Eindhoven Internet of NL 2015-09-24 2018-12-18 1 115 29,79 43

Things

Stuttgart Industrie 4.0 DE 2015-09-16 2019-11-19 1 52 22,57 37

und IoT Meetup

Regensburg Big Data DE 2018-04-180 2018-04-18 38 38 38,00 1

& IoT Enthusiasts

Provence IoT Meetup FR 2015-11-19 2016-04-21 5 99 40,00 3

LoRaWAN Berlin DE NA NA 2 2 2,00 1

LoRaWAN Hamburg DE 2015-09-16 2015-09-1 3 4 3,50 2

Internet of Things & DE 2015-11-12 2019-12-03 1 29 9,85 39

Hardware / IOX LAB

Diisseldorf

IoT Denmark DK 2015-11-20 2017-02-20 5 22 16,33 9

Table 18: MeetUp groups collected. Part III.

98

Name Country Event date Attendance Events
first last min maz. avg.

Internet of Things NL 2015-11-300 2018-11-13 1 55 18,37 27

Utrecht

IoT Innovation Lab DE 2015-11-24 2017-03-20 10 117 40,22 31

IoT Lab - Internet of DE 2016-02-16 2018-11-21 1 45 14,27 11

Things Lab

Copenhagen Bluemix DK 2016-01-28 2017-06-15 8 32 23,50 4

Meetup - Docker, IoT,

Watson, Node.red

IoT Praha CZ 2016-04-28 2016-04-28 15 15 15,00 1

TIoT Security - How to FR 2016-03-23 2018-06-27 1 56 11,13 15

trust these Things ?

Data Science for Inter- GB 2016-03-03 2018-11-22 1 92 43,53 41

net of Things Meetup -

London

Meetup Voiture Con- FR 2016-03-10 2018-12-13 26 171 115,84 19

nectée et Autonome

IoT Austria - Local AT 2016-04-08 2017-05-09 1 101 18,85 7

Group Innsbruck

Bristol and Bath Inter- GB 2016-04-11 2019-01-28 2 74 55,86 15

net of Things Meetup

ToT Austria - Local AT 2016-04-15 2018-02-20 1 100 8,65 23

Group Dornbirn

Bucharest IoT Meetup RO 2016-12-17 2018-06-27 9 53 31,00 2

Web of Things GB 2016-07-08 2017-04-26 34 54 42,66 3

TIoTDataViz London GB 2016-04-12 2017-02-07 40 57 48,50 2

IoT Bucharest RO 2016-04-04 2018-06-27 2 80 48,75 4

Glasgow Internet of GB 2016-06-21 2018-09-13 5 86 57,18 11

Things

TIoT Austria - Local AT 2016-10-03 2017-05-09 1 100 20,83 6

Group Leoben

LoRa IoT network in NL 2016-04-21 2018-12-12 5 46 18,12 25

Apeldoorn

Infocenter Internet der DE 2016-04-18 2018-11-23 1 9 2,562 25

Dinge Tibingen

The Things Network NL 2016-12-15 2017-05-18 11 13 12,00 2

Arnhem

Smart contracts, FR 2016-07-20 2017-11-30 3 17 10,60 5

blockchain et IOT

ToT-Sofia BG 2016-05-12 2016-06-09 15 18 16,50 2

Internet of Things - ES 2016-06-23 2017-11-09 31 36 33,50 2

Sevilla

Goteborg SE 2016-06-15 2016-06-15 18 18 18,00 1

Drones/Web/IOT /Design

Meetup

Table 19: MeetUp groups collected. Part IV.

99

Name Country Event date Attendance Events
first last min. maz. avg.

The Key Network NL 2017-01-26 2017-03-30 17 35 26,67 3

(TransIP)(LoraWAN)

- Meetup

LPWAN - from pro- SE 2016-06-16 2018-02-08 5 27 13,33 3

totypes to large-scale

production for IoT

IoT Makers Vienna AT 2016-09-20 2018-03-23 0 13 5,13 14

Internet of Things Al- GB 2016-06-22 2018-06-28 30 69 51,17 12

liance

The Things Network / NL 2016-07-06 2018-11-28 8 50 16,92 27

IoT Groningen

Schaffhausen IoT CH 2016-08-11 2016-08-11 5 5 5,00 1

meetup

Software Development DE 2016-10-06 2016-10-06 25 25 25,00 1

for the Internet of

Things (IoT)

Internet of Things Am- NL 2016-09-23 2016-11-23 36 47 41,50 2

sterdam

The Things Network DE 2016-08-13 2016-10-10 2 2 2,00 2

Miinster

LPWAN London GB 2016-09-08 2018-11-21 54 107 82,13 15

The Things Network - CH 2016-09-12 2018-03-03 5 29 10,80 5

Bern

Copenhagen IOTPEO- DK 2016-10-10 2017-03-17 52 66 57,50 4

PLE Meetup

HackWorks by GB 2016-10-12 2016-12-14 11 27 21,33 3

ThoughtWorks

IoT/IIoT Géteborg SE 2017-03-16 2017-12-12 22 63 43,00 3

LoRaWAN Bristol GB 2016-10-17 2018-03-19 19 31 23,00 5

Brighton & Sussex Ev- GB 2016-11-01 2018-01-30 6 14 9,12 8

erynet - your local

Things Network

Nottingham IoT (In- GB 2018-03-15 2018-12-13 7 28 18,67 9

ternet of Things)

Internet of Things GB 2016-12-06 2018-10-02 34 80 61,80 10

Manchester

The Things Network DE 2016-11-23 2019-11-07 1 25 10,28 25

Region Stuttgart

The Things Network GB 2016-11-15 2016-11-15 17 17 17,00 1

Oxford Meetup

hub:raum IoT PL 2016-11-30 2017-12-16 1 70 22,17 18

Academy

ToT Basel CH 2016-11-03 2018-11-29 15 30 21,38 13

TheThingsNetwork DE 2016-11-10 2018-12-17 4 17 12,50 14

Region Minchen

Makers and Coders 1E 2017-05-06 2017-10-07 3 7 4,00 4

(Maynooth)

Table 20: MeetUp groups collected. Part V.

100

Name Country Event date Attendance Events
first last min. maz. avg.

Future Cities, IoT & GB 2017-06-07 2017-07-05 17 26 21,50 2

PropTech - London

Dublin Cloud & IoT IE 2017-01-25 2017-09-28 80 85 82,50 2

Meetup

Solent Internet of GB 2017-01-23 2018-07-18 10 55 35,75 4

Things Meetup

IoT Budapest HU 2017-02-07 2017-10-10 35 103 60,50 6

IoT 101 - Internet of ES 2017-01-19 2017-01-19 58 58 58,00 1

Things & Applications

IoT Austria - Local AT 2017-03-20 2017-05-09 1 2 1,33 6

Group Eisenstadt

IoT Austria - Local AT 2017-02-21 2017-05-09 1 2 1,33 6

Group St.Polten

Internet of Things FI 2017-01-11 2017-08-31 3 40 18,00 4

Tampere

Agile Landscape 1T 2017-06-05 2018-11-16 1 45 21,50 4

Narrow Band IoT (NB- DE 2017-02-16 2017-06-23 5 70 37,50 2

IoT), Berlin

Microsoft IoT Meetup CH 2017-03-15 2017-06-06 36 62 49,00 2

IoT Brunch DE 2017-02-03 2018-11-09 24 108 59,14 27

Nantes IoT / Embed- FR 2017-03-07 2018-12-10 12 43 22,11 9

ded Linux and Android

Meetup

Fagkvelder @ Itera NO 2017-03-23 2018-10-25 34 50 42,14 7

IoT & BigData Sofia2 ES 2017-03-08 2018-02-28 42 76 59,40 5

Lab

Internet of Things NL 2017-04-18 2017-04-18 1 1 1,00 1

Meetup

LPWAN IoT DE 2017-03-11 2017-03-11 8 8 8,00 1

Hackathon

Women of Wearables GB 2017-04-26 2018-10-30 4 34 14,73 15

Internet of Things and NL 2017-04-20 2017-04-20 51 51 51,00 1

Industrial Design

STHLMLPWAN SE 2017-04-20 2018-03-13 10 48 29,00 2

The Things Network ES 2017-04-06 2018-11-30 2 46 15,44 9

Madrid Community

IoT & Blockchain DE 2017-05-03 2017-12-01 58 177 98,25 8

Meetup

Dublin Big data and 1IE 2017-06-20 2017-12-14 21 79 53,85 7

IoT Meetup

Hoogeveen & De NL 2017-05-24 2018-03-27 12 33 24,33 3

Wolden IoT Meetup

Table 21: MeetUp groups collected. Part VI.

101

Name Country Event date Attendance Events
first last min. mac. avg.

IoT 2020 DE 2017-05-16 2018-04-26 1 7 4,00 2

Meetup IoT / LoRa FR 2017-06-29 2017-06-29 41 41 41,00 1

& LoRaWAN Ile-de-

France

The Things Network CH 2017-05-09 2017-11-07 4 11 6,67 3

Luzern Community

ioBroker Meetup Karl- DE 2017-07-11 2017-07-11 26 26 26,00 1

sruhe Smart Home IoT

Cambridge IToT User GB 2017-09-14 2017-09-14 32 32 32,00 1

Group

IoT Leeds GB 2017-06-19 2018-10-22 30 60 39,11 9

IoT Meetup Milano IT 2017-06-07 2017-10-02 22 30 26,66 3

Internet of Things FR 2017-05-31 2018-05-31 8 84 37,47 21

Workshop Series Paris

Internet of Things DE 2017-06-01 2017-06-01 4 9 6,50 2

‘Workshop Series

Berlin

The Things Network PL 2017-06-20 2017-06-20 7 7 7,00 1

Wroclaw Community

Microsoft IoT & Al DE 2017-07-14 2018-11-09 7 123 34,28 38

Lab Munich

Internet of Things 1T 2017-07-13 2018-07-06 10 11 10,50 2

Workshop Series

Torino

TIoT Workshop Series DE 2017-08-08 2017-10-10 46 73 59,50 2

Disseldorf

Romanian Smart City RO 2017-09-22 2017-10-19 3 18 14,00 4

Meetup

Internet of Things DK 2017-08-22 2017-10-09 46 75 64,00 3

Workshops Series

Copenhagen

IoT Tech Meetup Dort- DE 2017-11-21 2018-04-25 48 52 50,00 2

mund

I0TA Beyond GB 2017-11-01 2017-11-01 12 12 12,00 1

Blockchain London

Workshops Series - In- FR 2017-10-17 2017-10-17 12 12 12,00 1

ternet des Objets BAB

IoT // Beyond the HU 2017-10-03 2018-01-23 7 32 17,00 3

Hype

Katowice IoT Meet PL 2017-10-17 2018-10-18 32 57 44,50 2

Tech Meetup - Reading GB 2018-08-14 2018-08-14 1 1 1,00 1

IoT Roma 1T 2017-11-23 2017-11-23 36 36 36,00 1

IoT Engineers London GB 2017-11-01 2017-11-01 28 28 28,00 1

Minchen IoT Meetup DE 2017-11-02 2018-12-20 14 128 88,62 8

Table 22: MeetUp groups collected. Part VII.

102

Name Country Event date Attendance Events
first last min. maz. avg.

IoT North Poland HuB PL 2017-11-30 2018-11-26 5 10 6,75 4

TTN-Network DE 2017-11-22 2018-10-10 2 23 11,67 12

Freiburg (LoRaWAN)

Barcelona IoT Core — ES 2018-05-30 2018-05-30 8 8 8,00 1

Internet of Things

Drenthe Lora Meetup NL 2017-11-27 2018-01-17 17 54 35,50 2

IoT Meetup Bodensee DE 2018-01-30 2018-11-27 3 11 6,12 8

Bits & Beer - Berlin’s DE 2017-12-13 2018-04-23 21 109 59,50 4

IoT Developer Evening

IOTA Meetup Ger- DE 2017-12-20 2018-03-01 10 148 71,00 3

many

GDG Cloud and IoT FR 2018-01-11 2019-11-14 0 50 12,56 9

Lyon

IOTA Application FR 2018-11-15 2018-12-13 16 43 29,50 2

Meetup

IOTA Chapter Luxem- LU 2018-07-05 2018-12-03 13 102 57,50 2

bourg

IoT and Robotics DE 2018-02-22 2018-06-28 2 6 4,00 3

Build Group

The Things Network DE 2018-02-12 2018-12-10 3 7 5,07 13

Paderborn

NB-IoT / Smart City AT 2018-03-01 2018-03-01 9 9 9,00 1

Meetup

Hardware Pioneers DE 2018-04-26 2018-11-22 9 33 20,60 5

#Munich

Cardiff Internet of GB 2018-04-12 2018-11-22 9 22 14,00 6

Things (IoT) Meetup

ConnHack - Shape the DE 2018-03-09 2018-03-09 14 14 14,00 1

future of Connected

Life

Athens IOT Industrial GR 2018-03-29 2018-06-28 42 64 53,00 2

Internet of Things

Meetup

Big Data - IoT ES 2018-03-15 2018-04-26 7 24 16,00 4

The Things Network ES 2018-04-13 2018-04-13 10 10 10,00 1

Asturias // #IoT

#Makers

IoT meets Data Sci- ES 2018-06-06 2018-12-11 71 74 72,50 2

ence

The Things Network ES 2018-04-21 2018-11-17 9 30 16,50 8

Catalunya

IOTA Meetup DE 2018-04-25 2018-11-22 9 104 46,20 5

Miinchen

IoT Pioneers HU 2018-04-24 2018-09-25 65 160 112,50 2

NB-IoT, Meet and DE 2018-05-09 2018-08-29 1 33 13,75 4

Greet Hub

Garage Lab RS 2018-05-30 2018-06-28 28 44 36,67 3

IoT Hessen (Kassel) DE 2018-08-21 2018-08-21 22 22 22,00 1

Copenhagen Iot & DK 2018-06-14 2018-06-14 55 55 55,00 1

Data Science Tech

Talk run by Cogniance

Meetup I0TBOX, FR 2018-06-05 2018-12-06 1 5 2,00 5

Paris

Table 23: MeetUp groups collected. Part VIII. List of the meetUp groups
identifying as IoT communities of practice. For each group, we have indicated
the official name of the group, the country where it develops its main activity,
the date of the first and last event registered, the maximum, minimum and

average attendance to its event and the total number of events (n).

References

(1]

2]

[10]

[11]

[12]

Muhammad Aurangzeb Ahmad, Zoheb Borbora, Jaideep Srivastava, and
Noshir Contractor. Link Prediction Across Multiple Social Networks. In
2010 IEEE International Conference on Data Mining Workshops, pages
911-918. IEEE, dec 2010.

Omar Alonso, Michael Gertz, and Ricardo Baeza-Yates. On the Value of
Temporal Information in Information Retrieval. SIGIR Forum, 41(2):35—
41, dec 2007.

Ricardo A Baeza-Yates and Berthier Ribeiro-Neto. Modern Information
Retrieval. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1999.

Michael J. Bannister, David Eppstein, Michael T. Goodrich, and Low-
ell Trott. Force-directed graph drawing using social gravity and scaling.
In Proceedings of the 20th International Conference on Graph Drawing,
GD’12, pages 414-425. Springer-Verlag, Berlin, Heidelberg, 2013.

Albert-Laszlo Barabasi, Reka Albert, and A. Barabési. Emergence of
Scaling in Random Networks. Science, 286(5439):509-512, oct 1999.

Vladimir Batagelj. Efficient Algorithms for Citation Network Analysis.
CoRR, ¢s.DL/0309023, 2003.

Vladimir Batagelj and Selena Praprotnik. An algebraic approach to tem-
poral network analysis based on temporal quantities. Social Network Anal-
ysis and Mining, 6(1):1-28, 2016.

Federico Battiston, Vincenzo Nicosia, and Vito Latora. Structural mea-
sures for multiplex networks. Physical Review E, 89(3):032804, 2014.

Michele Berlingerio, Michele Coscia, and Fosca Giannotti. Finding and
Characterizing Communities in Multidimensional Networks. In 2011 In-
ternational Conference on Advances in Social Networks Analysis and Min-
ing, pages 490-494. IEEE, jul 2011.

Michele Berlingerio, Michele Coscia, Fosca Giannotti, Anna Monreale,
and Dino Pedreschi. Multidimensional networks: foundations of structural
analysis. World Wide Web, 16(5-6):567-593, oct 2012.

Michele Berlingerio, Michele Coscia, Fosca Giannotti, Anna Monreale, and
Dino Pedreschi. Multidimensional networks: Foundations of structural
analysis. World Wide Web, 16(5-6):567-593, oct 2013.

Michele Berlingerio, Fabio Pinelli, and Francesco Calabrese. ABACUS:
frequent pAttern mining-BAsed Community discovery in mUltidimen-
sional networkS. Data Mining and Knowledge Discovery, 27(3):294-320,
2013.

104

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]
[23]

[24]

[25]

Ginestra Bianconi. Statistical mechanics of multiplex networks: Entropy
and overlap. Physical Review E, 87(6):062806, jun 2013.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet
allocation. The Journal of Machine Learning Research, 3:993-1022, mar
2003.

Cecile Bothorel, Juan David Cruz, Juan David, and Barbora Micenkova.
Clustering attributed graphs: models, measures and methods. Network
Science, 3(3):408-444, 2015.

Oualid Boutemine and Mohamed Bouguessa. Mining Community Struc-
tures in Multidimensional Networks. ACM Transactions on Knowledge
Discovery from Data, 11(4):1-36, jun 2017.

Ulrik Brandes, Natalie Indlekofer, and Martin Mader. Visualization meth-
ods for longitudinal social networks and stochastic actor-oriented model-
ing. Social Networks, 34(3):291-308, 2012.

P. Brodka, A. Chmiel, M. Magnani, and G. Ragozini. Quantifying layer
similarity in multiplex networks: a systematic study. Royal Society open
science, 5(8), 2018.

Matteo Brucato and Danilo Montesi. Metric Spaces for Temporal Infor-
mation Retrieval. In Maarten de Rijke, Tom Kenter, Arjen P de Vries,
ChengXiang Zhai, Franciska de Jong, Kira Radinsky, and Katja Hofmann,
editors, Advances in Information Retrieval, pages 385-397, Cham, 2014.
Springer International Publishing.

Christoph Buchheim, Markus Chimani, Carsten Gutwenger, Michael
Jinger, and Petra Mutzel. Crossings and Planarization. CRC Press,
2013.

Carter T Butts. \pkg{network}: A Package for Managing Relational Data
in \proglang{R}. Journal of Statistical Software, 24(2), 2008.

Carter T Butts. \pkg{network}: Classes for Relational Data. The Statnet
Project (\url{http://statnet.org}), 2015.

Carter T Butts. \pkg{sna}: Tools for Social Network Analysis, 2016.

Jonathan Chang and David M Blei. Relational Topic Models for Docu-
ment Networks. In David A Van Dyk and Max Welling, editors, AISTATS,
volume 5 of JMLR Proceedings, pages 81-88. JMLR.org, 2009.

Jonathan Chang, Jordan Boyd-Graber, and David M Blei. Connections
Between the Lines: Augmenting Social Networks with Text. In Proc. of
the 15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’09, pages 169-178, New York, NY, USA, 2009.
ACM.

105

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Justin Cheng, Lada A Adamic, Jon M Kleinberg, and Jure Leskovec.
Do cascades recur? In Proc. of the 25th international conference on
world wide web, pages 671-681. International WWW Conferences Steering
Committee, 2016.

Michele Coscia, Fosca Giannotti, and Dino Pedreschi. A classification for
community discovery methods in complex networks. Statistical Analysis
and Data Mining, 4(5):512-546, oct 2011.

Gabor Csardi and Tamas Nepusz. The \pkg{igraph} Software Package for
Complex Network Research. InterJournal, Complex Systems:1695, 2006.

Manlio De Domenico, Vincenzo Nicosia, Alexandre Arenas, and Vito La-
tora. Structural reducibility of multilayer networks. Nature communica-
tions, 6:6864, 2015.

Manlio De Domenico, Mason A. Porter, and Alex Arenas. MuxViz: a tool
for multilayer analysis and visualization of networks. Journal of Complex
Networks, 3(2):159-176, 2015.

Marina Diakonova, Vincenzo Nicosia, Vito Latora, and Maxi San Miguel.
Irreducibility of multilayer network dynamics: the case of the voter model.
Technical report, arXiv:1507.08940, 2015.

Josep Diaz, Jordi Petit, and Maria Serna. A survey of graph layout prob-
lems. ACM Comput. Surv., 34(3):313-356, September 2002.

Mark E. Dickison, Matteo Magnani, and Luca Rossi. Multilayer Social
Networks. Cambridge University Press, 2016.

Jana Diesner and Kathleen M Carley. Revealing Social Structure from
Texts: Meta-Matrix Text Analysis as a novel method for Network Text
Analysis. In Causal Mapping for Research in Information Technology,
pages 81-108, 2004.

Peter Sheridan Dodds and Christopher M Danforth. Measuring the Hap-
piness of Large-Scale Written Expression: Songs, Blogs, and Presidents.
Journal of Happiness Studies, 11(4):441-456, aug 2010.

Xiaowen Dong, Pascal Frossard, Pierre Vandergheynst, and Nikolai Nefe-
dov. Clustering on Multi-Layer Graphs via Subspace Analysis on Grass-
mann Manifolds. IEEE Transactions on Signal Processing, 62(4):905-918,
feb 2014.

Tim Dwyer, Kim Marriott, Falk Schreiber, Peter Stuckey, Michael
Woodward, and Michael Wybrow. Exploration of networks using
overview+detail with constraint-based cooperative layout. IEEE trans-
actions on visualization and computer graphics, 14(6):1293-300, January
2008.

106

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Dirk Eddelbuettel and Romain Frangois. \pkg{Rcpp}: Seamless
\proglang{R} and \proglang{C++} Integration. Journal of Statistical
Software, 40(8):1-18, 2011.

Daniel Edler, Ludvig Bohlin, and Martin Rosvall. Mapping higher-order
network flows in memory and multilayer networks with Infomap. CoRR,
abs/1706.04792, 2017.

Paul Erdos and Alfréd Rényi. On the Evolution of Random Graphs. Publ.
Math. Inst. Hung. Acad. Sci, 5(1):17-60, 1960.

Z. Fatemi, M. Magnani, and M. Salehi. A generalized force-directed lay-
out for multiplex sociograms. In Social Informatics - 10th International
Conference, 2018.

Institute for Scientific Information, E Garfield, I H Sher, and R J Torpie.
The Use of Citation Data in Writing the History of Science. Institute for
Scientific Information, 1964.

Santo Fortunato. Community detection in graphs. Physics Reports, 486(3-
5):75-174, 2010.

Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by
force-directed placement. Softw. Pract. Exper., 21(11):1129-1164, Novem-
ber 1991.

Laetitia Gauvin, André Panisson, Ciro Cattuto, and Alain Barrat. Activ-
ity clocks: spreading dynamics on temporal networks of human contact.
Scientific reports, 3:3099, jan 2013.

Valerio Gemmetto and Diego Garlaschelli. Multiplexity versus correlation:
the role of local constraints in real multiplexes. Scientific reports, 5, 2015.

Manuel Gomez Rodriguez, Jure Leskovec, and Andreas Krause. Infer-
ring Networks of Diffusion and Influence. In Proceedings of the 16th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’10, pages 1019-1028, New York, NY, USA, 2010.
ACM.

Palash Goyal and Emilio Ferrara. Graph Embedding Techniques, Appli-
cations, and Performance: {A} Survey. CoRR, abs/1705.0, 2017.

Thilo Gross and Bernd Blasius. Adaptive coevolutionary networks: a
review. Journal of The Royal Society Interface, 5:259-271, 2008.

Mark S Handcock, David R Hunter, Carter T Butts, Steven M Goodreau,
and Martina Morris. \pkg{statnet}: Software Tools for the Statistical
Modeling of Network Data. Seattle, WA, 2003.

107

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Obaida Hanteer, Luca Rossi, Davide Vega D’Aurelio, and Matteo Mag-
nani. From Interaction to Participation: The Role of the Imagined Au-
dience in Social Media Community Detection and an Application to Po-
litical Communication on Twitter. In ASONAM, pages 531-534. {IEEE}
Computer Society, 2018.

Tina Hellsten and Loet Leydesdorff. Automated Analysis of Topic-Actor
Networks on Twitter: New approach to the analysis of socio-semantic
networks. CoRR, abs/1711.0, 2017.

Petter Holme and Jari Saraméki. Temporal networks. Physics Reports,
519(3):97-125, oct 2012.

Xiao Huang, Jundong Li, and Xia Hu. Label Informed Attributed Network
Embedding. In Proc. of the 10th ACM International Conference on Web
Search and Data Mining, WSDM ’17, pages 731-739, New York, NY,
USA, 2017. ACM.

Xiaodi Huang, Wei Lai, A.S.M. Sajeev, and Junbin Gao. A new algo-
rithm for removing node overlapping in graph visualization. Information
Sciences, 177(14):2821 — 2844, 2007.

David R Hunter, Mark S Handcock, Carter T Butts, Steven M Goodreau,
and Martina Morris. \pkg{ergm}: A Package to Fit, Simulate and Di-
agnose Exponential-Family Models for Networks. Journal of Statistical
Software, 24(3):1-29, 2008.

Roberto Interdonato, Andrea Tagarelli, Dino Ienco, Arnaud Sallaberry,
and Pascal Poncelet. Node-centric community detection in multilayer net-
works with layer-coverage diversification bias. apr 2017.

Skye BenderadeMoll James Moody, Daniel McFarland. Dynamic network
visualization. American Journal of Sociology, 110(4):1206-1241, 2005.

LUCAS G. S. JEUB, MICHAEL W. MAHONEY, PETER J. MUCHA,
MASON A. PORTER, Zhana Kuncheva, Giovanni Montana, Emmanuel
Lazega, M. Mihail, Mark Newman, Stanley Wasserman, and Katherine
Faust. A local perspective on community structure in multilayer networks.
Network Science, pages 1-20, jan 2017.

Inderjit S Jutla, Lucas G S Jeub, and Peter J Mucha. A generalized Lou-
vain method for community detection implemented in Matlab. Technical
report.

T. Kamada and S. Kawai. An algorithm for drawing general undirected
graphs. Inf. Process. Lett., 31(1):7-15, April 1989.

Nattiya Kanhabua, Roi Blanco, and Kjetil Ngrvag. Temporal Information
Retrieval. Found. Trends Inf. Retr., 9(2):91-208, 2015.

108

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

73]

Jinseok Kim and Jana Diesner. Over-time measurement of triadic closure
in coauthorship networks. Social Network Analysis and Mining, 7(1):9,
mar 2017.

Jung Yeol Kim and K.-I. Goh. Coevolution and Correlated Multiplexity
in Multiplex Networks. Physical Review Letters, 111(5):58702, 2013.

Jungeun Kim, Jae-gil Lee, and Sungsu Lim. Differential Flattening: A
Novel Framework for Community Detection in Multi-Layer Graphs. ACM
Transactions on Intelligent Systems and Technology (TIST), 8(2):27,
2016.

Jungeun Kim and Jae-Gil J.-G. Lee. Community detection in multi-layer
graphs: A survey. SIGMOD Record, 44(3):37-48, dec 2015.

Daichi Kimura and Yoshinori Hayakawa. Coevolutionary networks with
homophily and heterophily. Phys. Rev. E, 78(1):16103, 2008.

Mikko Kiveld, Alexandre Arenas, Marc Barthelemy, James P. Gleeson,
Yamir Moreno, Mason A. Porter, Mikko Kivela, Alexandre Arenas, Marc
Barthelemy, James P. Gleeson, Yamir Moreno, Mason A. Porter, Mikko
Kiveld, Alexandre Arenas, Marc Barthelemy, James P. Gleeson, Yamir
Moreno, and Mason A. Porter. Multilayer Networks. Journal of Complex
Networks, 2(3):203-271, sep 2014.

Yehuda Koren, L. Carmel, and D. Harel. Ace: a fast multiscale eigenvec-
tors computation for drawing huge graphs. In Information Visualization,
2002. INFOVIS 2002. IEEE Symposium on, pages 137-144, 2002.

Evangelos Kotsakis. Structured Information Retrieval in XML Docu-
ments. In Proc. of the 2002 ACM Symposium on Applied Computing,
SAC ’02, pages 663-667, New York, NY, USA, 2002. ACM.

Jan Kralj, Anita Valmarska, Miha Grcar, Marko Robnik—éikonja, and
Nada Lavrac¢. Analysis of Text-Enriched Heterogeneous Information Net-
works. In Nathalie Japkowicz and Jerzy Stefanowski, editors, Big Data
Analysis: New Algorithms for a New Society, pages 115-139. Springer
International Publishing, Cham, 2016.

Pushpa Kumar and Kang Zhang. Visualization of clustered directed
acyclic graphs with node interleaving. In Proceedings of the 2009 ACM
Symposium on Applied Computing, SAC ’09, pages 1800-1805, New York,
NY, USA, 2009. ACM.

Zhana Kuncheva and Giovanni Montana. Community Detection in Mul-
tiplex Networks using Locally Adaptive Random Walks. In Proceedings
of the 2015 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining 2015 - ASONAM ’15, pages 1308-1315,
New York, New York, USA, 2015. ACM Press.

109

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

Maciej Kurant and Patrick Thiran. Layered Complex Networks. Physical
Review Letters, 96(13):138701, apr 2006.

Renaud Lambiotte, Vsevolod Salnikov, and Martin Rosvall. Effect of mem-
ory on the dynamics of random walks on networks. Journal of Complex
Networks, 3(2):177-188, 2015.

Renaud Lambiotte, Lionel Tabourier, and Jean-Charles Delvenne. Bursti-
ness and spreading on temporal networks. The Furopean Physical Journal
B, 86(7):320, jul 2013.

Victor Lavrenko, Matt Schmill, Dawn Lawrie, Paul Ogilvie, David Jensen,
and James Allan. Mining of Concurrent Text and Time Series. In SIGKDD
workshop on text mining, pages 37-44, 2000.

Jay Lee, Manzil Zaheer, Stephan Giinnemann, and Alex Smola. Prefer-
ential Attachment in Graphs with Affinities. In Guy Lebanon and S V N
Vishwanathan, editors, Proc. of the Eighteenth International Conference
on Artificial Intelligence and Statistics, volume 38 of Proc. of Machine
Learning Research, pages 571-580, San Diego, California, USA, 2015.

Hartmut H K Lentz, Thomas Selhorst, and Igor M Sokolov. Unfolding
Accessibility Provides a Macroscopic Approach to Temporal Networks.
Phys. Rev., 110(11):118701-118706, 2013.

Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos,
Jeanne VanBriesen, and Natalie Glance. Cost-effective outbreak detec-
tion in networks. International conference on Knowledge Discovery and
Data Mining (KDD), page 420, 2007.

Ding Ma. Visualization of social media data: mapping changing social
netwroks . Master’s thesis, the Faculty of Geo-Information Science and
Earth Observation of the University of Twent, 2012.

Matteo Magnani, Danilo Montesi, and Luca Rossi. Conversation Retrieval
from Microblogging Sites. Information Retrieval Journal, 15(3-4), 2012.

Matteo Magnani and Luca Rossi. The ML-Model for Multi-layer Social
Networks. In ASONAM, pages 5-12. IEEE Computer Society, 2011.

Matteo Magnani and Luca Rossi. Formation of multiple networks. In So-
cial Computing, Behavioral-Cultural Modeling and Prediction, pages 257—
264. Springer Berlin Heidelberg, 2013.

Matteo Magnani and Luca Rossi. Pareto Distance for Multi-layer Network
Analysis. In Ariel M. Greenberg, William G. Kennedy, and Nathan D. Bos,
editors, Social Computing, Behavioral-Cultural Modeling and Prediction,
volume 7812 of Lecture Notes in Computer Science, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

110

[86]

[87]

[88]

[89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

Filippo Menczer. Evolution of document networks. Proceedings of the
National Academy of Sciences, 101(suppl 1):5261-5265, 2004.

J L Moreno and Helen Hall. Jennings. Who shall survive? : a new ap-
proach to the problem of human interrelations / by J. L. Moreno. Nervous
and Mental Disease Publishing Co., Washington, D. C. :, 1934.

Peter J Mucha and Mason A Porter. Communities in multislice voting net-
works. Chaos: An Interdisciplinary Journal of Nonlinear Science, 20(4),
2010.

Mark E. J. Newman. Networks: An Introduction. Oxford University Press,
2010.

Vincenzo Nicosia, Ginestra Bianconi, Vito Latora, and Marc Barthelemy.
Growing multiplex networks. arXiv preprint arXiv:1302.7126, 2013.

Vincenzo Nicosia and Vito Latora. Measuring and modeling correlations
in multiplex networks. Physical Review E - Statistical, Nonlinear, and
Soft Matter Physics, 92(3):1-20, 2015.

Rogier Noldus and Piet Van Mieghem. Assortativity in complex networks.
Journal of Complex Networks, 3(4):507-542, 2015.

Brendan O’Connor, Ramnath Balasubramanyan, Bryan R Routledge, and
Noah A Smith. From Tweets to Polls: Linking Text Sentiment to Public
Opinion Time Series. In William W Cohen and Samuel Gosling, editors,
Proc. of the Eleventh International Conference on Web and Social Media.

The AAAI Press.

Antonio Rivero Ostoic. \pkg{multiplex}: Algebraic Tools for the Analysis
of Multiple Social Networks, 2018.

John F Padgett and Paul D McLean. Organizational Invention and Elite
Transformation: The Birth of Partnership Systems in Renaissance Flo-
rence. American Journal of Sociology, 111(5):pp. 1463—-1568, 2006.

Gergely Palla, Imre Derényi, I11és Farkas, and Taméas Vicsek. Uncovering
the overlapping community structure of complex networks in nature and
society. Nature, 435(7043):814-818, 2005.

Ashwin Paranjape, Austin R Benson, and Jure Leskovec. Motifs in Tem-
poral Networks. In Proc. of the 10th ACM International Conference on
Web Search and Data Mining, WSDM ’17, pages 601-610, New York, NY,
USA, 2017. ACM.

Tiago P Peixoto and Martin Rosvall. Modelling sequences and temporal
networks with dynamic community structures. Nature communications,
8(1):582-594, 2017.

111

[99]

[100]

[101]

[102]

[103]

[104]

[105)

[106]

[107]

[108]

[109]

Denis Redondo, Arnaud Sallaberry, Dino Ienco, Faraz Zaidi, and Pascal
Poncelet. Layer-Centered Approach for Multigraphs Visualization. In
International Conference on Information Visualisation (iV), pages 50-55,
2015.

Xiang Ren, Ahmed El-Kishky, Chi Wang, and Jiawei Han. Automatic
Entity Recognition and Typing in Massive Text Corpora. In Proc. of the
25th International Conference Companion on World Wide Web, WWW
’16 Companion, pages 1025-1028, Geneva, Switzerland, 2016. Interna-
tional WWW Conferences Steering Committee.

Xiang Ren, Yuanhua Lv, Kuansan Wang, and Jiawei Han. Comparative
Document Analysis for Large Text Corpora. In Proc. of the Tenth ACM
International Conference on Web Search and Data Mining, WSDM ’17,
pages 325-334, New York, NY, USA, 2017. ACM.

B. Renoust, G. Melangon, and T. Munzner. Detangler: Visual analytics
for multiplex networks. Computer Graphics Forum, 34(3):321-330, 2015.

Ruth M Ripley, Tom A B Snijders, Zsofia Béda, Andras Vords, and
Paulina Preciado. Manual for \pkg{Siena} version 4.0. Technical report,
Oxford: University of Oxford, Department of Statistics; Nuffield College,
2018.

Michal Rosen-Zvi, Thomas Griffiths, Mark Steyvers, and Padhraic Smyth.
The Author-topic Model for Authors and Documents. In Proc. of the 20th
Conference on Uncertainty in Artificial Intelligence, UAI 04, pages 487—
494, Arlington, Virginia, United States, 2004. AUAI Press.

Giulio Rossetti, Michele Berlingerio, and Fosca Giannotti. Scalable Link
Prediction on Multidimensional Networks. In 2011 IEEE 11th Interna-
tional Conference on Data Mining Workshops, pages 979-986. IEEE, dec
2011.

Luca Rossi and Matteo Magnani. Towards effective visual analytics on
multiplex and multilayer networks. Chaos, Solitons and Fractals, 72:68—
76, 2015.

Martin Rosvall, Alcides V Esquivel, Andrea Lancichinetti, Jevin D West,
and Renaud Lambiotte. Memory in network flows and its effects on spread-
ing dynamics and community detection. Nature communications, 5, 2014.

Camille Roth. Knowledge Communities and Socio-Cognitive Taxonomies.
In Rokia Missaoui, Sergei O Kuznetsov, and Sergei Obiedkov, editors,
Formal Concept Analysis of Social Networks, pages 1-18. Springer Inter-
national Publishing, Cham, 2017.

Camille Roth and Jean-Philippe Cointet. Social and semantic coevolution
in knowledge networks. Social Networks, 32(1):16-29, 2010.

112

[110]

[111]

[112)

[113]

[114]

[115)

[116]

[117]

[118]

[119]

[120]

Mostafa Salehi, Rajesh Sharma, Moreno Marzolla, Matteo Magnani,
Payam Siyari, and Danilo Montesi. Spreading processes in Multilayer Net-
works. IEEE Transactions on Network Science and Engineering, 2(2):65
— 83, 2015.

Marcus Schaefer. The graph crossing number and its variants: a survey.
The electronic journal of combinatorics, 1000:DS21-May, 2013.

Ingo Scholtes. When is a Network a Network?: Multi-Order Graphical
Model Selection in Pathways and Temporal Networks. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, volume 1 of KDD 2017, pages 1037-1046. ACM,
2011.

Ingo Scholtes, Nicolas Wider, René Pfitzner, Antonios Garas, Claudio J
Tessone, and Frank Schweitzer. Causality-driven slow-down and speed-up
of diffusion in non-Markovian temporal networks. Nature communications,
5(1):5024-5033, 2014.

A Shabbeer, C Ozcaglar, M Gonzalez, and KP Bennett. Optimal em-
bedding of heterogeneous graph data with edge crossing constraints. In
Presented at NIPS Workshop on Challenges of Data Visualization, page 1,
2010.

Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and S Yu Philip. A
survey of heterogeneous information network analysis. IEEE Transactions
on Knowledge and Data Engineering, 29(1):17-37, 2017.

Tom A B Snijders. Models for Longitudinal Network Data. In Peter J
Carrington, John Scott, and StanleyEditors Wasserman, editors, Models
and Methods in Social Network Analysis, Structural Analysis in the Social
Sciences, pages 215-247. Cambridge University Press, 2005.

Tom A B Snijders. Siena: Statistical Modeling of Longitudinal Network
Data. In Reda Alhajj and Jon Rokne, editors, Encyclopedia of Social
Network Analysis and Mining, pages 1718-1725. Springer New York, New
York, NY, 2014.

Ricard V Sole, Bernat Corominas Murtra, Sergi Valverde, and Luc Steels.
Language networks: Their structure, function, and evolution. Complezity,
15(6):20-26, 2010.

John F Sowa. Principles of semantic networks: Explorations in the rep-
resentation of knowledge. Morgan Kaufmann, 2014.

Andrea Tagarelli, Alessia Amelio, and Francesco Gullo. Ensemble-based
community detection in multilayer networks. Data Mining and Knowledge
Discovery, 31(5):1506-1543, sep 2017.

113

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

L. Tamine, L. Soulier, L.B. Jabeur, F. Amblard, C. Hanachi, G. Hubert,
and C. Roth. Social media-based collaborative information access: Analy-
sis of online crisis-related twitter conversations. In HT 2016 - Proceedings
of the 27th ACM Conference on Hypertext and Social Media, pages 159—
168, 2016.

Lei Tang, Xufei Wang, and Huan Liu. Uncoverning Groups via Hetero-
geneous Interaction Analysis. 2009 Ninth IEEFE International Conference
on Data Mining, pages 503-512, 2009.

Lei Tang, Xufei Wang, and Huan Liu. Community detection via het-
erogeneous interaction analysis. Data Mining and Knowledge Discovery,
25(1):1-33, jul 2011.

Nazanin Afsarmanesh Tehrani, Matteo Magnani, N. Afsarmanesh, and
Matteo Magnani. Partial and overlapping community detection in multi-
plex social networks. In Social Informatics, volume 11186 of Lecture Notes
in Computer Science, pages 15-28. Springer, 2018.

Davide Vega and Matteo Magnani. Foundations of Temporal Text Net-
works. Applied Network Science, 3(1):25:1—25:26, 2018.

Tiphaine Viard, Matthieu Latapy, and Clémence Magnien. Comput-
ing maximal cliques in link streams. Theoretical Computer Science,
609(1):245-252, 2016.

T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J.J. van
Wijk, J.-D. Fekete, and D.W. Fellner. Visual analysis of large graphs:
State-of-the-art and future research challenges. Computer Graphics Fo-
rum, 30(6):1719-1749, 2011.

Chenguang Wang, Yangqiu Song, Haoran Li, Yizhou Sun, Ming Zhang,
and Jiawei Han. Distant Meta-Path Similarities for Text-Based Heteroge-
neous Information Networks. In Proc. of the 2017 ACM on Conference on
Information and Knowledge Management, CIKM ’17, pages 1629-1638,
New York, NY, USA, 2017. ACM.

Howard D White and Belver C Griffith. Author cocitation: A literature
measure of intellectual structure. Journal of the American Society for
Information Science, 32(3):163-171, 1981.

114

