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Abstract 

 

Protocells are minimal cell-like entities widely used to explore how the first cells might have assembled at 

the advent of life on Earth, and for their potentially useful functions as materials. This is because 

protocells are often very simple, with a limited number of components, but can display complex and 

varied behaviours. How these complex behaviours can be understood and how these chemicals can be 

orchestrated to come together and yield life-like systems remain key questions. Herein, starting from a 

large collection of 7767 droplet experiments collected on a closed loop artificial intelligence robot 

platform, we develop novel analytical methods providing us with insights into the intricate underlying 

dynamics of our oil droplet protocell system. Machine learning algorithms enabled the identification of 

connections between the physical properties and behaviours of droplets, as well as the prediction of new 

formulations likely to exhibit a rare behaviour - droplet swarming. Furthermore, using 1H NMR 

spectroscopy and a pH indicator we were able to better understand oil dissolution, chemical change, 

phase transitions and droplet and aqueous phase flow. Finally, we designed a new robot to explore the oil 

and aqueous phase composition simultaneously using a genetic algorithm. Droplets thus showed more 

varied and extreme behaviours hinting at the complexity inherent in such systems. We argue that cheap, 

customisable automated platforms used in conjugation with advanced algorithms can benefit a wide 

range of research areas including complex systems, synthetic and materials chemistry. 

Significance Statement 

 

Exploring and understanding the emergence of complex behaviours is difficult even in ‘simple’ chemical 

systems since the dynamics can rest on a knife edge between stability and instability. Herein, we study the 

complex dynamics of a ‘simple’ protocell system, comprising four component oil droplets in an aqueous 

environment using an automated platform equipped with artificial intelligence. The system autonomously 

selects and performs oil in water droplet experiments, and then records and classifies the behaviour of 

the droplets using image recognition. The data acquired is then used to build predictive models of the 

system. Physical properties such as viscosity, surface tension, and density are related to behaviours, as 

well as to new droplet behavioural niches, such as collective swarming.  
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Introduction 

 

There is great interest in oil-in-water droplets both as protocell models and as simple systems that display 

an astonishingly delicate set of behaviours that rest on a sensitive knife edge between stability and 

instability.(1) They have been shown to exhibit cell like properties including movement, division and 

chemotaxis whilst inherently satisfying the need for a protocell to be compartmentalised.(2-5) The 

understanding of the driving forces influencing these droplets is limited, although Marangoni instabilities, 

imbalances in surface tension initiated by symmetry breaking, are thought to play a key role.(6)  Indeed, 

along with autocatalytic systems(7-9), chemical gardens(10, 11) and other protocell models,(12, 13) these 

systems together illustrate how the combination of relatively few components and phase boundaries can 

lead to complex and ‘life-like’ outcomes. Chemotaxis(14, 15) movement in response to chemical stimuli 

such as a pH or salt concentration gradient, has also been observed in simple oil-in-water droplet 

systems.(3, 4, 16-18) These oil droplet behaviours are thought to be driven by Marangoni instabilities 

originating from surface tension asymmetry and by the relative solubilities of the oil and aqueous phase 

components.(6, 19)  

The use of automation and image analysis in the exploration of protocell and droplet systems has been 

shown to be a powerful way to investigate the behaviours observed for a four-component oil-in-water 

droplet system.(2) This is because these platforms are now easy to design and construct using affordable 

and open-source hardware and software. For example, bespoke closed-loop systems can be used for the 

robotic exploration and assisted evolution of physicochemical systems, expanding from the fields of 

engineering and robotics, and inspired from the realm of biology.(20-24) The variation in droplet 

behaviours as their composition varied can be vast and unpredictable, despite having only a small number 

of inputs. For example,(2) when using only four oil inputs droplets could move rapidly, remain stationary, 

divide into many smaller droplets, deform or display a whole range of behaviours. The issue is that the 

systems seem so complex that deriving mechanistic and predictive information seems far from reach.  

Herein, we first apply classic analytical chemistry techniques and machine learning to try to expand 

understanding of our oil-in-water droplet system and to develop analytical methods universally applicable 

to such systems. The droplets are composed of four oils (octanoic acid, diethyl phthalate (DEP), 1-octanol 

and 1-pentanol) and are placed in a high pH surfactant containing aqueous phase. The utilisation of 

machine learning for the prediction of the surface tension and viscosity of the oil mixtures enables the 

correlation of these to droplet behaviours. pH indicators are shown to be a method suitable for visualising 

the flow of material within and outside the oil droplets whilst 1H NMR spectroscopy is used to quantify 

the level of oil dissolution in the aqueous phase. Furthermore, we present a chemorobotic platform 

developed to allow us to study how the chemical environment of the droplets (i.e. the aqueous phase) 

influences the droplet’s behaviours by adding up to six aqueous phase constituents. Using the platform 

we screen for interesting droplet behaviours and utilise a genetic algorithm to optimise both the oil and 
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aqueous phases simultaneously, thus showing that the co-evolution of an entity with its environment 

allows the discovery of behavioural niches unreachable by independent evolution. Fundamentally, the 

combination of physicochemical analysis, machine learning and robotically assisted evolution has allowed 

significant advances to be made in understanding the mechanism behind droplet behaviours and moved 

us closer to being able to predict them. 

 

Results 

Our system comprises oil droplets (composed of octanoic acid, DEP, 1-octanol and 1-pentanol) placed into 

a surfactant containing aqueous phase by a robotic assistant. The droplet behaviour is recorded, analysed 

by computer vision and fed back to generate the next experiments via a genetic algorithm, in a closed 

loop system (Figure 1). Using this system, 7767 experiments were previously undertaken aimed at 

exploring the behaviours possible in this system and optimising for three – movement, division and 

vibration. This represented a vast underexplored dataset which we wanted to exploit to try and 

investigate the mechanisms behind the behaviours observed in our system. Furthermore, we have now 

expanded the system to allow the simultaneous variation of the aqueous phase. 

 

Figure 1 - A summary of the workflow presented herein. During robotic exploration, oil droplets are placed into a surfactant 

containing aqueous phase by a robotic assistant. The droplet behaviour is recorded, analysed by computer vision and fed 

back to generate the next experiments via a genetic algorithm, in a closed loop system. The recipes and data generated 

from this process are then used for physicochemical analysis, where traditional chemical analysis, machine learning and 

archetypal droplet experiments are used to study the behavioural mechanisms and to predict droplet behaviours. 

Chemical Analysis 

We hypothesized that the various behavioural effects observed in the previously reported system are 

due to a trade-off between different oil properties (e.g. density, surface tension and viscosity) and oil 

dissolution (Figure 2). We targeted our investigations on a select number of archetypal formulations 

known to exhibit behaviours representative of what is possible in the system. In the subsequent sections 

we present analysis of the oil density, dynamic viscosity and surface tension, showing how these 

properties can be related to droplet behaviour. To do this we utilise machine learning techniques – the 

utility of which is rapidly being demonstrated across the physical sciences.(25-28) Phenolphthalein is used 
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to investigate phase mixing and material flows whilst 1H NMR enables quantification of oil dissolution in 

the aqueous phase. 

 

 

Figure 2 - A summary of the different physical and chemical processes thought to be occurring in our oil-in-water droplet 

system. VM = viscosity modifier. 

A number of oil formulations were prepared and their density, dynamic viscosity and surface tension 

measured, with the intention of testing for any correlation between these physical properties and droplet 

behaviour. From this initial dataset, it was clear that for density a simple weighted mean was sufficient for 

predicting mixed oil formulation densities (see Figure 3). For viscosity, however, an Arrhenius based 

method yielded unsatisfactory results for dynamic viscosity prediction whilst no appropriate method for 

surface tension prediction of oil mixtures could be found. As such, machine learning regression was 

utilised for the prediction of the physical properties of all the formulations previously tested – some 7767 

experiments – and mined for trends. 

 

Figure 3 - Plots of the predicted density (left), dynamic viscosity (centre) and surface tension (right) against their measured 

values. Blue points are predicted using weighted mean (density) and Arrhenius based method (viscosity) whilst red values 

are predicted using an SVM regressor. 
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Figure 4 reveals definite correlations between the physical properties of a given oil mixture and how 

the droplets behave. These plots are presented in full in Supplementary Video 1. For example, oil 

formulations expressing high levels of division usually have a high density for their surface tension and 

viscosity and a high surface tension for their viscosity. Similarly, high movement is expressed for 

formulations with a broad range of intermediate physical properties whilst vibration occurs at the 

opposite end of the physical property space to division. These trends were confirmed using a machine-

learning approach to predict the behavioural trends from oil physical properties, as shown in 

Supplementary Figure 2. This is significant as it allows us to build a property to behaviour model that fills 

the gaps between observations. 

To test whether we could use physical properties in a predictive manner, we identified two non-

overlapping regions in the physical property space where a swarming behaviour (see Automated 

Experiments section) appeared to be favoured. The physical properties of these formulations were 

predicted and used to select similar recipes that had not previously been analysed by eye. By repeating 

these experiments, 20 of the 53 exhibited swarming in both repeats (Supplementary Figure 5), 

demonstrating that our predicted physical properties could be used to discover more instances of a rare 

behaviour.  Both regions occurred at low viscosity and surface tension, but one at significantly higher 

density (0.92-0.96 gmL-1 vs 0.85-0.88 gmL-1). Prediction of physical properties is therefore a useful tool for 

both identifying general trends and for identifying new recipes that display a previously observed 

behaviour.  
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Figure 4 – Impact of dynamic viscosity, density and surface tension on droplet behaviour:  movement (left), vibration 

(centre) and division (right). Each dot is an experiment, the colour is proportional to the intensity of the behaviour.  

To investigate phase mixing and material flows, we added a pH indicator - phenolphthalein - to the oil 

phase. Upon droplet placement the clear, neutral indicator may be deprotonated and turn pink. These 

experiments confirmed that there is aqueous-oil phase mixing going in both directions – both the oil and 

aqueous phase end up stained pink, whilst clouds of pink were often seen to diffuse out of the droplets. 

Furthermore, vastly different effects between the different oils were observed, for example, DEP tends to 

favour mixing at the boundary and gentler internal mixing whilst pentanol favours rapid internal mixing, 

as illustrated in Supplementary Video 2. They also show the complexity of the system – the fact that such 

complex behaviours can be exhibited in such simple systems is remarkable. Supplementary Video 3 shows 

the Sudan III (red dye) and phenolphthalein (pH indicator) versions of the same four component 

formulations and illustrates how much more information is accessible using the indicator. Whilst the 

presence of the indicator will have some effect on the droplet properties, these videos demonstrate that 
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the effect is minimal. In some cases droplets expel white or pink material and influence the behaviour of 

nearby droplets, suggesting that matter expelled from the droplets affected the Marangoni forces 

resulting in chemotaxis. This visualisation of the ‘tethering’ of droplets is both interesting and surprising. 

The indicator observations were fairly consistent for the same formulation, but different formulations 

with a high fitness for a particular behaviour did not exhibit identical indicator phenomena. 

Hypothesising that oil dissolution could play a role in droplet behaviour, we developed an experimental 

procedure to quantify the amount of each oil dissolved in the aqueous phase. Interestingly, ethanol was 

present in the aqueous phase, due to the hydrolysis of DEP, showing that, even in this simple system, both 

physical and chemical processes take place. Initially, we focused on droplets containing either a single oil 

or a 1:1 (v/v) mixture of two oils. 

 

Figure 5 – Plots showing the concentration of oil dissolved in the aqueous phase for various formulations 1 minute after 4 × 

4 µL droplets are placed in 3.5 mL aqueous phase. Top panel: The proportion of the oil present dissolved for droplets 

composed of a single oil or 1:1 (v/v) mixture of 2 oils. i.e. point A-B corresponds to the oil dissolution levels when a 1:1 (v/v) 

mixture of DEP and octanol is used as the droplet formulation.  Lower panel: The concentration oil dissolved for full 4 oil 

formulations, categorised by the high or low fitnesses they show for certain behaviours. Key: Vib, LoVib – High or low 

vibration fitness. Div, LoDiv - High or low division fitness. 4Drops – A division fitness of 4 – i.e. 4 droplets present after 1 

minute. Mov, Stat – High or low movement fitness. Error bars show SD. 

As can be seen from Figure 5, there are significant variations in the levels of oil dissolution 

depending on the oil formulation present. When placed alone, octanoic acid and pentanol dissolve to 

significant levels (red and purple circles), whilst DEP is not seen to dissolve at all (blue circle), as expected 

given the oils’ aqueous solubilities. The trend for the binary mixtures are not, however, as predictable. 

Octanoic acid and pentanol promote the dissolution of the other oils, whilst simultaneously their own 
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dissolution is lower. Octanoic acid is seen to dissolve at low levels when mixed with DEP, octanol or even 

pentanol. These observations could either be due to molecular scale interactions or due to droplet 

behaviour. On observing how each of the binary oil droplet behaves, however, there does not appear to 

be a direct link between oil dissolution and droplet behaviour in these cases. For those cases with large 

error bars, it is thought this is due to spatiotemporal variations in the oil concentration within each 

experiment.  

For full formulations the levels of oil dissolution are similar, but for a few outliers. These formulations 

represent a vast range of droplet behaviours, thus implying that the level of oil dissolution does not play a 

key role in defining droplet behaviour. There are some exceptions, however. For example, three 

formulations show significantly higher levels of octanoic acid dissolution than the rest of the 

formulations. On viewing the phenolphthalein indicator videos of these formulations, these are also the 

only formulations that show a ‘tethering’ interaction between droplets, thus implying there is a link 

between octanoic acid dissolution and this interaction, potentially with octanoic acid aqueous phase 

supramolecular assemblies playing a key role. The level of pentanol dissolution is also seen to vary 

significantly, although in almost all cases this is just a reflection of the changing level of pentanol in the 

formulation, as pentanol has a relatively high water solubility. It is very interesting to know that oil 

dissolution does not play a key role in the quantified droplet behaviours but can be linked to other 

observed effects. 

Automated Experiments 

To investigate how the chemical environment of the droplets (i.e. the aqueous phase) influences their 

behaviour we wished to enable the simultaneous variation and optimisation of both the aqueous and oil 

phases. A robotic platform was designed to automatically undertake droplet experiments with variable 

aqueous and oil phases, with droplet analysis via video recording (Supplementary Figure 7, 

Supplementary Video 4). Six aqueous phase modifiers were chosen for use on the automated platform: 

the cationic surfactants TTAB and CTAB; the non-ionic surfactants Brij O10 and Triton X-100; the 

zwitterionic surfactant DDMAB and poly(ethylene glycol) (Mn = 400). These were chosen due to their 

varied chemical structures, properties, effects on droplets and compatibility. To identify the droplet 

behaviours possible in this new system, 393 random recipes were tested. Movement and division, as 

previously observed with the single aqueous phase system, were again the most prevalent droplet 

behaviours. Remarkably, several new behaviours were identified: swarming, fusion, pulsing and sorting 

(see Supplementary Video 5). 

 ‘Swarming’ was observed when the droplets divided into a large number of small droplets on 

placement, maintaining a close proximity to each other whilst appearing to move in concert, as illustrated 

in Figure 6. Interestingly, if a larger droplet approached the swarm of smaller droplets, the direction and 
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shape of the whole swarm changed in response to repulsive interactions. From our analysis work we have 

some understanding of the driving forces behind this swarming behaviour. Initially, a large number of 

droplets must be present – hence the formulation must be unstable leading to rapid division. Following 

this,  small droplets either move collectively, apparently driven by bulk surface tension variations 

‘carrying’ the droplets together; or the smaller droplets are ‘herded’ by larger droplets, whose more 

definite movements through the swarm cause the swarm to shift around the larger droplet. Often, there 

is a period of rapid division at the beginning of the experiment followed by a period of swarming and then 

the repeated fusion of the small droplets. 

 

Figure 6 – Video snapshots of a swarming formulation, converted into black and white outlines using ImageJ. Numbers in 

the corners correspond to the experiment time in seconds since the experiment started.  Initially there are relatively few 

droplets, fairly evenly spaced (0-60s). These then divide and swarm, to give more droplets closer together. At around 100-

105 s, the rapid dissolution of a droplet stuck to the edge of the dish (not shown), leads to a much tighter knit swarm, with 

an average inter-droplet distance of only around 6.4 mm. The variation in inter-droplet distance is also seen to decrease. 

Images processed using ImageJ.(29)  

Droplet ‘fusion’ had previously been observed in the TTAB only system, but it was very rare owing to 

the stabilising boundary formed by the cationic surfactant. It would, however, be a desirable behaviour 

for oil droplets to exhibit, especially if it can be controlled, due to the possibility of controlling a chemical 

reaction between two components dissolved in two separate droplets. Electrostatic repulsion plays a role 

in the prevention of fusion, in addition to surfactant gradients induced by the decrease of distance 

between droplets resulting in Marangoni forces against the direction of movement.(30) These forces can 

be reduced by ion-pairing between oppositely charged ions (e.g. quaternary ammonium surfactant and 

octanoate). Clusters of many smaller droplets provide greater surface area for the deprotonation of 
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octanoic acid, which combined with cationic surfactants in the aqueous phase forms a catanionic system. 

Indeed, fusion is far more commonly observed for smaller droplets and division for larger droplets, 

implying there may be an intermediate optimal radius in many cases. As surfactant concentrations vary, 

fluctuations in interfacial tension mean that division could be favoured in one location in the dish and 

fusion in another.(31) Some droplet formulations give droplets which may fuse if they happen by chance 

to collide with each other, i.e. they have no significant repulsive or attractive forces, whilst others exhibit 

attraction to each other and experience a change of trajectory before fusion. ‘Pulsing’ droplets exhibit 

constant, rapid changes in diameter as the droplets shrink and grow periodically. This is in contrast to 

vibration, which involves rapid changes in a droplet’s direction of movement. When droplets were 

attracted to the walls of the petri dish they sometimes also exhibit movement around the edge of the 

dish, division or fusion. This also often resulted in droplet ‘sorting’, in which the droplets spread 

themselves evenly around the circumference of the dish due to repulsive interactions between the 

droplets. 

Having identified the behaviours possible in this system, a genetic algorithm optimization was then 

carried out for movement using all ten components. CTAB and Brij-O10 were quickly optimized out almost 

entirely (Supplementary Figure 6), thus only the remaining four aqueous phases were subsequently used. 

It is very interesting to note that TTAB and CTAB, which differ only by two CH2 groups to the surfactant 

tail, have such different effects on droplet behaviour. The results of a genetic algorithm optimization for 

movement (average speed of the droplets) with these eight parameters are shown in Figure 7a. With 

these eight inputs there are 9.2 × 1015 possible recipes, a space unfeasible to search exhaustively. The 

genetic algorithm was run for 30 generations, with 10 new recipes each generation, taking approximately 

80 hours for a complete optimization. The optimization was repeated in triplicate from random starting 

recipes, and compared with the maximum fitness values observed in the oil only experiments. The final 

median fitness value of each individual GA run surpassed 5.37 mm s-1, whilst the maximum fitness value 

achieved was 9.59 mm s-1. This compares to the oil only optimisations which achieved a maximum droplet 

speed of 7.17 mm s-1 and a median of up to 4.78 mm s-1. The large increase in median fitness from less 

than 1.0 up to 5.37 – 6.93 mm s-1 showed that the environment in which the droplets are placed has a 

considerable influence on their movement, and that the higher number of parameters used in the 

optimization enabled even higher fitnesses to be observed. Supplementary Figure 9 shows the evolution 

of the composition of both the aqueous and oil phases during the evolutionary experiments. Overall, the 

compositional trajectories and final values differ significantly between runs while the upward trend in 
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fitness is conserved, illustrating the complexity of the system and why it is beneficial to optimise the 

aqueous and oil phases together. Interestingly, as Supplementary Figure 10 shows, the physical properties 

of the oil phase are fairly consistent throughout the runs, despite this compositional variation. 

To investigate whether such high fitnesses could be observed by first optimising the oil phase and then 

the aqueous phase, instead of optimising them simultaneously, evolution experiments were carried out 

with a predefined high fitness oil formulation optimised in the TTAB only aqueous phase (Supplementary 

Figure 11). The recipe chosen had a high, reproducible movement fitness value of 5.96 mm s-1. The oil 

droplet fitness again increased throughout the optimisation, but only by 1-2 mm s-1, in contrast to 

approximately 6.0 mm s-1 in the case of the 8 parameter evolution experiment. Only one of the three runs 

surpassed the fitness previously observed with 100 % TTAB aqueous phase suggesting that 100 % TTAB 

was close to the optimal aqueous phase for this oil formulation, even though much higher fitnesses are 

attainable with different oil-aqueous formulations. Supplementary Video 6 compares the fastest moving 

droplets from each of these evolution experiments. 

The evolutionary trajectories were compared between the oil only, aqueous only and combined 

optimizations (Figure 7a). The oil only optimization began from the highest fitness value compared to the 

others, closely followed by the aqueous only optimization. In contrast, the combined optimization of 

aqueous and oil phases began at a fitness value of below 1.0 mm s-1, far lower than the other runs, which 

both began with one phase closer to optimal. With the composition of both phases completely 

randomized for all individuals in the first generation, the low median fitness demonstrates that the 8 

parameter space is vast and contains many more poor formulations for a given fitness criterion than good 

ones. The increase in fitness over successive generations is rapid, and leads to a much higher final fitness 

than for either of the separate optimizations. This demonstrates the complexity of the formulation space - 

an oil phase which is optimal for one aqueous phase may give poor results in another aqueous phase, and 

vice versa, yet when both phases are optimized together, the full range of effects of each component on 

the others is taken into account, and therefore a greater space is available to the algorithm for 

exploration. 
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Figure 7 – a) - Comparison of median fitness values for each generation between the oil only, aqueous only, and 

simultaneous aqueous and oil optimizations. Error bars show SD. b) Change in physical properties of the oil mixture vs 

generation for the aqueous & oil phase optimization (run 1). The black line corresponds to the median for each generation, 

the dark yellow area shows the distribution between the 75th and 25th percentile, and the pale yellow area shows the 

distribution between the 90th and the 10th percentile. 

Discussion 

Three novel analytical methods have been developed for the analysis of oil in water droplet systems – 

formulation physical property prediction based on machine learning methods, quantification of oil 

dissolution using 1H NMR spectroscopy and the use of a pH indicator to visualise phase mixing and flows. 

Through density, viscosity and surface tension prediction, correlations have been identified between 

physical properties and droplet behaviours. This also allowed the prediction of recipes exhibiting a rare 

droplet behaviour – swarming. 1H NMR spectroscopy has shown that, despite a massive range of droplet 

behaviours, the levels of oil dissolution are generally constant for all recipes. This implies that oil 

dissolution is not the key factor defining droplet behaviour. It is our intention, however, to further develop 

this method via sampling at different times and locations – maybe dissolution kinetics varies in a way not 

captured by our end point method. Finally, the use of a pH indicator has opened a window into the 

droplet and aqueous phase dynamics. Specifically, long range ‘tethering’ interactions have been identified 

between droplets, which seems to be linked to octanoic acid dissolution in the aqueous phase. Notably, 

the three analytical methods developed complement each other; one is a measure of bulk properties, one 

is a measure of the state of the system and the other allows visualisation of spatiotemporal variations 
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within the system. Particularly, the NMR and indicator studies fill a gap in the physical property prediction 

in that they study dynamic processes occurring, not just bulk properties. 

By expanding our droplet system to include the aqueous phase, using different surfactant types and 

modifiers, new droplet behaviours were observed. The increased speed of the droplets accessible when 

both phases (eight parameters) were optimized together (over oil or aqueous phase in isolation) shed 

light on the complexity and intertwined physicochemical properties of our droplet system. With eight 

parameters a complete exploration of all possible combinations would take 2.1 × 1011 years with our 

platform, making artificial intelligence an indispensable tool. Evolution in materio, using artificial 

intelligence in combination with a liquid handling robot for autonomous exploration of chemical spaces is 

rapidly proving its utility for tackling wider chemical problems. Over and above work utilising oil-in-water 

droplets, we believe that cheap, robust and customisable automated platforms, in conjugation with 

advanced computer science methods, represent a hugely underdeveloped opportunity for chemists to 

apply to a wide range of research areas including complex systems, chemical synthesis and materials 

chemistry. Of particular interest are recent developments on novelty seeking and curiosity driven 

algorithms that opens the way to the genuine autonomous exploration of what can be done with a new 

system rather than a more directed optimization of a specific property.(32, 33) In the future, we hope to 

apply these methods to other systems, to further show the benefits possible via the interaction of these 

fields. 

Materials and Methods 

Detailed materials and methods are given in the supporting information. The robotic platform used 

within this work is based upon that previously reported by this group, modified to allow the use of 

multiple aqueous phase constituents.(2) Due to the need for maximum consistency throughout 

experiments, standard operating procedures were developed for oil and aqueous phase preparation 

which are shown in the supporting information. Aqueous phases were prepared with a 20 mM 

concentration of the given modifier at a pH of c. 13 whilst the oils were dyed with 0.25 mgmL-1 Sudan III 

dye. For each droplet experiment, 4 × 4 µL droplets were placed into 3.5 mL of mixed aqueous phase and 

a 1 minute video recorded for analysis via computer vision. 

Experiments based on Physical Property Prediction 

For physical property prediction, the viscosity and density of 81 formulations were measured, whilst 

the surface tension of 69 oil formulations were measured using the Du Noüy ring method. A weighted 

mean was then deemed sufficient for density prediction, whilst a SVM regressor using a 'RBF' kernel was 

used for viscosity and surface tension prediction. For the discovery of new swarming formulations the 

density, viscosity and surface tension of 5 known swarming formulations were calculated. The range of 

physical properties from each group of swarming formulations were used to find formulations within 
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them that could be tested and analysed for swarming behaviours. 53 formulations were tested in 

duplicate, of which 20 exhibited swarming in both repeats, with a further 10 showing swarming in one of 

the two repeats. 

Random Matrix Screen 

A proximity-limited random search was carried out in 10 dimensions (6 aqueous, 4 oils), using a 

threshold factor to ensure formulations generated were sufficiently different, 393 random formulations 

were tested. 

Genetic Algorithm Explorations 

A genetic algorithm was used with a genome length equal to the number of components for the 

mixture. 24 random combinations were tested to form generation 1, then roulette wheel selection was 

used to select individuals carried over to undergo crossover and random mutation - forming the next 

generation of 10 individuals. The experiment was continued for 30 generations. An individual’s fitness was 

quantified using the previously published methodology.(2)  
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