
UI Design for an Engineering Process: Programming
Experiments on a Liquid Handling Robot

Farzad Nejatimoharrami1, Andres Faina1

1Robots, Evolution, and Art Lab (REAL)
IT University of Copenhagen

Copenhagen, Denmark
Corresponding author: fnej@itu.dk

Andrea Jovanovic2, Olivier St-Cyr2, Mark Chignell2,
Kasper Stoy1

2University of Toronto
Toronto, Canada

Abstract—In this paper we describe the development of a user
interface for a liquid handling robot. We report on the user
interface design process for the interface, beginning with
requirements analysis and rapid prototyping followed by
heuristic evaluation. We then demonstrate the resulting cloud
interface where the robot is controlled remotely in a teleoperation
mode to program common protocols in chemistry, and biology,
laboratories. We describe the main characteristics of the web
interface, focusing on solution strategies used to expose features
for programming experiments, remotely. We also report System
Usability Scale (SUS) scores obtained by testing the interface with
15 experts in the fields of chemistry, and biology.

Keywords-component; Human-robot Interaction, Robot
Software Architecture Design, Cloud Computing for Distributed
and Real Time Robotics, User Interface Design, Usability Research.

I. INTRODUCTION
We have developed a liquid handling robot, called EvoBot

[1, 2] which performs typical experiments in chemistry and
biology laboratories. EvoBot is designed in three layers as can
be seen in Fig. 1. A labelled view of some of the main
components in EvoBot is shown in Fig. 2. The head (top layer)
moves in x, and y directions, and experiment specific modules,
such as single or multi channel syringes, a pH probe, or an
OCT Scanner can also be mounted on it. The chemical vessels,
such as well plates, petri dishes, PCR plates, tube racks, and
troughs are placed on the transparent experimental layer in the
middle. The camera at the bottom is the sensing layer which
analyses image frames and provides feedback to the ongoing
experiment.

EvoBot has been designed to be affordable by taking
advantage of open source hardware available in the 3D printing
community, and building on top of it. EvoBot costs $1,500,
disregarding assembly expenses. This enables even relatively
small laboratories to use it. EvoBot has been developed as part
of the EVOBLISS EU project, and is used for different
applications in seven different countries. The applications
include artificial chemical life experiments, microbial fuel cell
experiments, visualizing biofilm structures by OCT scans, and
routine liquid handling experiments [3,4,5].

EvoBot’s application programming interface (API) allows
researchers to build on top of the functionality of the robot.
Developed in Python, it supports the use of different modules
for different applications. EvoBot is an open source system.

Examples of how to develop software and create new modules
for EvoBot, using the API, may be found in the repository
(https://bitbucket.org/afaina/evobliss-software.git.)

Like many complex engineering systems, liquid handling
robots have traditionally had complex and difficult to use
interfaces [6]. Thus in addition to providing a low cost and
extensible open source system, the EvoBot team wanted to
provide a good user interface that would be more intuitive and
easier to use. It was particularly important to make the robot
more efficient [7]. Furthermore, a good interface design was
needed to reduce errors in setting up and programming
experiments. When dealing with chemicals, errors are
potentially dangerous, and a good user interface can improve
safety by providing good feedback. Last but not least, the long-
term costs of ownership and use of the robot should be lower
with a good interface, reducing the need for user training, and
will lead to greater efficiency and accuracy in performing
experiments.

Advantageously, users can access the robot at any location
of their choosing, and on any device. On the other hand,
teleoperation can be a challenging task as the operator is
remotely located, the operator’s situation awareness of the
remote environment can be compromised and resulting mission
effectiveness can suffer [8]. This should be carefully addressed
in the design of the interface.

Figure 1. Overview of EvoBot .

II. PROTOCOL-BASED WEB INTERFACE
In this section we discuss the development of a user

(protocol web) interface for EvoBot. The protocol interface
does not require expert knowledge to program, and provides an
intuitive interface for common tasks in a laboratory. The

guided by a set of heuristics [10]. Clarkson and Arkin (2007)
[11] examined a number of lists of heuristics that were
subsequently developed, and then integrated them into a new
list in the special context of human-robot interaction:

1. Sufficient information design
2. Visibility of system status
3. Appropriate information presentation
4. Use natural cues
5. Synthesis of system and interface
6. Help users recognize, diagnose, and recover from

errors
7. Flexibility of interaction architecture
8. Aesthetic and minimalist design

An expert evaluator used the Clarkson and Arkin list to
identify usability problems in the low fidelity prototype of the
EvoBot user interface. Each problem identified was labelled
with a severity based on the original ratings provided by
Nielsen (1995) [12] which vary from 1-4, where 1 is a cosmetic
problem only, and 4 is “usability catastrophe”.

TABLE I. HIGH SEVERITY PROBLEMS
Interface Evaluator Observation Heuristics Severity

Set up
environment

The meaning of the “location”
input field is unclear. 3, 6 4

The experimental layer
representation does not clearly
reflect the real-world.

3, 4, 5 4

Program
Experiment

Terms and phrases do not reflect
users’ language. 4 4

 Units are manually input from a
keyboard. 3. 6 4

 Units are hardcoded into the
interface. 3, 4, 6, 7 4

 Required input parameters are
missing. 1, 3 4

 Tasks cannot be removed or
reordered. 7 4

 The “run experiment” function is
unclear. 2, 6 4

Table 1 shows the eight high severity problems that were
identified. Two of them were found in the configuration
component of the interface and six of them were found in the
experiment programming interface. Seven (1-7) of the 8
heuristics listed by Clarkson and Arkin were involved in
defining the problems (numbers provided in third column of
Table 1).

D. Final Protocol-based Web Interface
The protocol-based web interface is a webpage, which

enables users to perform common liquid handling tasks. The
users first define the layout of experiment to be performed. The
experimental layer of the robot is partitioned in rows and
columns. The users will choose the type of vessels for the
experiment and set their location on the experimental layer as
can be seen in Fig. 5. Users will also choose a name for the
vessel to refer to in the next step. When the layout of the
experiment is set, users proceed to the protocol setup (see Fig.
6) Users can select the task they need to perform, choose from
the vessels they have named in layout setup page, and define
the parameters for the task. When a series of tasks are set in a
protocol, the users can either run the experiment on the robot or
save it for later use.

The experiment log at the bottom of the screen provides
live feedback from the robot while the experiment is
happening. It informs users of the start of experiments, the
experiment’s progress step by step, and will let them know
when the experiments finish. The robot will also warn users if
there are any issues during the experiments, such as if the user
has forgotten to mount a syringe, or power on the robot, or if a
vessel is running out of liquid. The status indicator at the top of
the screen informs users if the robot is ready to be used or not.

E. Implementation of Cloud Web Interface
To implement this interface, we needed to make some

modifications to EvoBot’s hardware. We replaced the
dedicated computer with a cheap (roughly US 35-dollar)
Raspberry Pi 3, which is a single board computer. The
Raspberry Pi 3 is connected to the Arduino controlling the
robot through serial communications with a standard A-B USB
Cable. EvoBot’s API resides on the Raspberry Pi 3, and the
experiment code is executed on the Raspberry Pi 3. EvoBot
uses an extended version of Marlin firmware to add support for
control modules on the head. It resides on an Arduino Mega,
and is the link between software and hardware. It interprets
commands from the G code file and controls the motion
accordingly. The Raspberry Pi 3 is connected to the internet
through the wireless network adaptor on the board.

On the software side, we use the MEAN stack (MongoDB,
Express, AngularJS, Node.js), and web sockets, to realize our
interface. Our software architecture can be seen in Fig. 7. The
backend for our user interface has been implemented using web
sockets, instead of common RESTful APIs. The first reason is
that accessing the robot behind a Local Area Network (LAN)
requires port forwarding which is not always possible, as it is
not allowed on all networks. In addition, leaving a port open all
the time while port forwarding exposes the network to security
risks. Secondly, traditional restful APIs were not useful in our
situation, as the link is terminated after the connection. In our
situation, the robot and the interface need to actively listen for
events, and respond accordingly.

Figure 5. Experiment Layout Page.

Figure 6. Protocol Setup Page

Figure 7. Software architecture of the user interface

The protocol-based web interface allows multiple users to
control their corresponding robots simultaneously. This is
because each robot has a unique API Key. Therefore users will
login with their credentials, and access their own robot. This is
useful as multiple copies of EvoBot are used in seven
laboratories in different countries.

The advantages of a web user interface includes the fact
that it is usable on multiple platforms, software setup is
facilitated, and there is an increase in affordability. The users
can access the user interface on any device, such as a tablet, a
desktop, a mobile phone, or different operating systems, such
as OSX, Windows, or Linux. In addition, users don’t have to
deal with the cumbersome task of installing the numerous
packages for the robot as it is taken care of on the Raspberry Pi
3. Last but not least, the price of EvoBot decreases drastically
as a dedicated desktop device is no longer required.

III. USER INTERFACE EVALUATION
We evaluated our user interface by 15 users with diverse

expertise in chemistry, biology, artificial chemical life, etc,
from universities in North America, and different countries in
Europe. The user interface was constantly improved by
feedback from users. One example of feedback was difference
in technical terms. For instance, we replaced absorb with
aspirate as they refer to different tasks in laboratories. The term
triturate was also replaced by pipet up and down, as not all
users were familiar with this expression. Dilution was changed
to serial dilution, and the parameters for the task were modified
to reflect how chemists perform the task in practice.

We used the System Usability Scale (SUS) to evaluate our
user interface. SUS is a highly robust and versatile tool for
usability testing [13]. We got an average score of 87 in our
usability testing. Another interesting observation was that the
users with experience using a liquid handling robot interface
gave a higher usability interface to the protocol-based user
interface.

IV. CONCLUSIONS
In this paper we describe the development of a user

interface for a liquid handling robot, and highlight the

strategies that allowed us to develop a web interface for remote
control of EvoBot, as well as the UCD process that we
followed to design the cloud interface. Using a special version
of heuristic evaluation designed for robot interfaces we were
able to identify key usability problems in the prototype and
develop a web user interface that is currently being
implemented on EvoBot and that represents a significant
advance of prior user interfaces for liquid handling robots.

ACKNOWLEDGMENT
E.U. Future and Emergent Technologies supported this

work through EVOBLISS grant no. 611640, and members of
the EVOBLISS consortium evaluated the robot user interface.
Florian Blauert, Pavlina Theodosiou, and Silvia Holler
provided feedback on the interface. Naveen Venayak, Brian
Nguyen, and Jenna Blumenthal at the University of Toronto
also provided constructive feedback on the user interface

REFERENCES
[1] A. Faina, F. Nejatimoharrami, K. Stoy, P. Theodosiou, B. Taylor, and I.

Ieropoulos, “: An open-source, modular liquid handling robot for nur-
turing microbial fuel cells,” in ALIFE16 Conference Proceedings. MIT
Press, Cambridge, MA, USA, July 2016, pp. 626–633.

[2] A. Faina, F. Nejatimoharrami, and K. Stoy, “Evobot: An open-source,
and modular liquid handling robot,” Accepted for publication in The
IEEE Robotics and Automation Magazine.

[3] F. Nejatimoharrami, A. Faina, J. Cejkova, M. Hanczyc, and K. Stoy,
“Robotic automation to augment quality of artificial chemical life exper-
iments,” in ALIFE16 Conference Proceedings. MIT Press, Cambridge,
MA, USA, July 2016, pp. 634–635.

[4] F. Nejatimoharrami, K. Stoy, and A. Faina, “An open-source, low-cost
robot for performing reactive liquid handling experiments,” in
SLAS2016 Conference, January 2016.

[5] P. Janska, Z. A., F. Nejatimoharrami, A. Faina, K. Stoy, and J. Cejkova,
“Collective behaviour in droplet systems,” in 43rd International
Conference of SSCHE, May 2016.

[6] M. A. Goodrich and A. C. Schultz, “Human-robot interaction: A
survey,” Found. Trends Hum.-Comput. Interact., vol. 1, no. 3, pp. 203–
275, Jan. 2007. [Online]. Available:
http://dx.doi.org/10.1561/1100000005

[7] A. Steinfeld, T. Fong, D. Kaber, M. Lewis, J. Scholtz, A. Schultz, and
M. Goodrich, “Common metrics for human-robot interaction,” in
Proceed- ings of the 1st ACM SIGCHI/SIGART Conference on Human-
robot Inter- action, ser. HRI ’06. New York, NY, USA: ACM, 2006, pp.
33–40.

[8] J. Y. C. Chen, E. C. Haas, and M. J. Barnes, “Human performance issues
and user interface design for teleoperated robots,” IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol.
37, no. 6, pp. 1231–1245, Nov 2007.

[9] J. Preece, Y. Rogers, and H. Sharp, Interaction Design: Beyond Human-
Computer Interaction. New York, NY, USA: John Wiley & Sons, Inc.,
2015.

[10] J. Nielsen and R. Molich, “Heuristic evaluation of user interfaces,” in
SIGCHI Conference Proceedings, ser. CHI ’90. ACM, 1990, pp. 249–
256. [Online]. Available: http://doi.acm.org/10.1145/97243.97281

[11] E. Clarkson and R. C. Arkin, “Applying heuristic evaluation to human-
robot interaction systems,” in Flairs Conference Proceedings, 2007, pp.
44–49.

[12] J. Nielsen, “Severity ratings for usability problems,” Papers and Essays,
vol. 54, 1995.

[13] H. A. Yanco, J. L. Drury, and J. Scholtz, “Beyond usability evaluation:
Analysis of human-robot interaction at a major robotics competition,”
Human–Computer Interaction, vol. 19, no. 1-2, pp. 117–149, 2004.

	kuch
	tasvir5

